Circular Motion Problem -- Ball on a String Spinning in a Vertical Circle

AI Thread Summary
The discussion revolves around a circular motion problem involving a ball on a string spinning in a vertical circle. The user derives the equation relating velocity and angular velocity but struggles with the two unknowns in the equation. They highlight the importance of understanding the minimum velocity needed for the string to remain taut at the top of the circle. Key considerations include the forces acting on the ball and the conditions required for maintaining tension in the string. The conversation emphasizes the need to analyze the forces at the top of the vertical circle to solve for the unknowns effectively.
Al-Layth
Messages
21
Reaction score
4
Homework Statement
A ball of 5.0 kg mass is attached to the end of a long wire and whirled around in a perfect
circle of 0.9 m radius in the vertical plane. Calculate the following:

Calculate the Minimum Velocity and Minimum Angular Velocity
Relevant Equations
#F= m\frac{v^2}{r} = mw^{2}r#

#m: Mass#
#v: Speed#
#r: Circle Radius#
#w: Angular Velocity#
#F= m\frac{v^2}{r} = mw^{2}r#

#m=5#
#r=0.9#

#F= 5\frac{v^2}{0.9} = (0.9)5w^{2}#

#5\frac{v^2}{0.9} = (0.9)5w^{2}#

#\frac{v^2}{0.9} = (0.9)w^{2}#

#v=0.9w#

then I get stuck cause I have both unknowns in one equations (i bet it has something to do with the question’s use of “minimum” but I don’t know where to go from here) so help mee thx
 
Physics news on Phys.org
The question says the circle is in the vertical plane. What else do you have to take account of in this case?
 
Where is the velocity minimal? What is required for the string to be taut there?
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Back
Top