- #1
Enzipino
- 13
- 0
In class we had to show that ${A}_{5}$ is cyclic. So what we did was,
${A}_{5}$ is cyclic iff there is an $\alpha\in{A}_{5}$ with $<\alpha> = {A}_{5}$. So, the $ord(\alpha) = |<\alpha>| = |{A}_{5}| = \frac{5!}{2} = 60$. So, $60 = {2}^{2}*3*5$.
After this, we said that we could do a 4-cycle, 3-cycle, and 5-cycle, which would be in ${S}_{12}$ but not ${A}_{5}$. We concluded by saying ${A}_{5}$ is not cyclic.
The main thing I'm confused about is why the 4-cycle, 3-cycle, and 5-cycle is not in ${A}_{5}$. Could someone just clarify this?
${A}_{5}$ is cyclic iff there is an $\alpha\in{A}_{5}$ with $<\alpha> = {A}_{5}$. So, the $ord(\alpha) = |<\alpha>| = |{A}_{5}| = \frac{5!}{2} = 60$. So, $60 = {2}^{2}*3*5$.
After this, we said that we could do a 4-cycle, 3-cycle, and 5-cycle, which would be in ${S}_{12}$ but not ${A}_{5}$. We concluded by saying ${A}_{5}$ is not cyclic.
The main thing I'm confused about is why the 4-cycle, 3-cycle, and 5-cycle is not in ${A}_{5}$. Could someone just clarify this?