- #1
Bacle
- 662
- 1
Hi, All:
I am trying to see how to classify all symmetric bilinear forms B on R^3 as a V.Space
over the reals.
My idea is to use the standard basis for R^3 , then use the matrix representation M
=x^T.M.y . Then, since M is, by assumption, symmetric, we can diagonalize M.
So it seems all symmetric bilinear forms are just all diagonal matrices; maybe we
need to factor out those that are equivalent as bilinear forms, i.e., B,B' are equivalent
if there is a linear isomorphism L:R^3-->R^3 with B(v)=B'(L(v)).
Is this right? Is there anything else?
I am trying to see how to classify all symmetric bilinear forms B on R^3 as a V.Space
over the reals.
My idea is to use the standard basis for R^3 , then use the matrix representation M
=x^T.M.y . Then, since M is, by assumption, symmetric, we can diagonalize M.
So it seems all symmetric bilinear forms are just all diagonal matrices; maybe we
need to factor out those that are equivalent as bilinear forms, i.e., B,B' are equivalent
if there is a linear isomorphism L:R^3-->R^3 with B(v)=B'(L(v)).
Is this right? Is there anything else?