- #1
LagrangeEuler
- 717
- 20
In CG coefficients methodology there is convention
[tex]\langle J_1 J_2 J_1 J-J_1|J_1 J_2 J J \rangle \geq 0[/tex]
So if we have ##J_1=1##, ##J_2=1/2##
[tex]\langle 1 \quad 1/2 \quad 1/2 \quad 1|1 \quad 1/2 \quad 3/2 \quad 3/2\rangle \geq 0[/tex]
using this convention. However, because ##J=3/2## is maximal value of angular moment, this is only CG coefficient and we could write
[tex]\langle 1 \quad 1/2 \quad1/2 \quad 1|1 \quad 1/2 \quad 3/2 \quad 3/2\rangle =1[/tex]
Now if we work with ##J_-## operator we will obtain that
[tex]\langle 1 \quad 1/2 \quad -1/2 \quad -1|1 \quad 1/2 \quad -3/2 \quad -3/2\rangle =1[/tex]
Do we have some similar convention for this lowest value of angular momentum?
[tex]\langle J_1 J_2 J_1 J-J_1|J_1 J_2 J J \rangle \geq 0[/tex]
So if we have ##J_1=1##, ##J_2=1/2##
[tex]\langle 1 \quad 1/2 \quad 1/2 \quad 1|1 \quad 1/2 \quad 3/2 \quad 3/2\rangle \geq 0[/tex]
using this convention. However, because ##J=3/2## is maximal value of angular moment, this is only CG coefficient and we could write
[tex]\langle 1 \quad 1/2 \quad1/2 \quad 1|1 \quad 1/2 \quad 3/2 \quad 3/2\rangle =1[/tex]
Now if we work with ##J_-## operator we will obtain that
[tex]\langle 1 \quad 1/2 \quad -1/2 \quad -1|1 \quad 1/2 \quad -3/2 \quad -3/2\rangle =1[/tex]
Do we have some similar convention for this lowest value of angular momentum?