MHB Closed infinite orthonormal system

AI Thread Summary
An infinite orthonormal system in a Euclidean space is closed if the norm of any vector can be expressed as the sum of the squares of its projections onto the basis vectors. The discussion explores the proof of this property using optimal approximations from finite-dimensional subspaces. It confirms that the equality between the sums of squares of the projections holds true, as both expressions represent the same quantity. The clarification provided emphasizes that for real numbers, the square of a number equals the square of its absolute value. The conversation concludes with the participant expressing understanding of the concept.
mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

I am lokking at the proof of the following sentence.

An infinite orthonormal system $\{e_1, e_2, ... \} \subset H$, where $H$ an euclidean space, is closed at $H$ iff $ \forall x \in H$
$$||x||^2=\sum_{i=1}^n{|(x,e_i)|^2}$$

We suppose a subspace of $H$, that is produced by the basis $H_m=span \{e_1, e_2,..., e_m \} \subset H$ and we suppose $y_m \in H_m$ the optimal approximation of $x \in H$ from $H_m$.
So $(x-y_m, u)=0, \forall u \in H_m$
For $u=y_m:$
$(x-y_m, y_m)=0$
$x-y_m \perp y_m$
From the Pythagorean Theorem:
$||(x-y_m)+y_m||^2=||x-y_m||^2+||y_m||^2$
$||x||^2= ||x-y_m||^2+||y_m||^2$

$y_m$ can be written as $\sum_{i=1}^m{(x,e_i)e_i}$

So
$||x-\sum_{i=1}^m{(x,e_i)e_i}||^2+||\sum_{i=1}^m{(x,e_i)e_i}||^2=||x||^2$

Taking the limit $m \rightarrow \infty$ we have:

(From the definition of closed orthonormal system we have that $\lim_{n \rightarrow \infty}{||x-\sum_{i=1}^m{(x,e_i)e_i}||}=0, \forall x \in H$)

$||x||^2=\sum_{i=1}^{\infty}{|(x,e_i)|^2}$I tried to get the result by doing the calculations:

$||x||^2=|| \sum_{i=1}^{\infty}{(x,e_i)e_i}||^2=( \sum_{i=1}^{ \infty }{(x,e_i)e_i}, \sum_{i=1}^{\infty}{(x,e_i)e_i})=\sum_{i=1}^{ \infty }{((x,e_i)e_i, (x,e_i)e_i))}=\sum_{i=1}^{\infty}{(x,e_i)(e_i, e_i)(x,e_i)}= \sum_{i=1}^{\infty}{(x,e_i)(x,e_i)}= \sum_{i=1}^{\infty}{(x,e_i)^2}$

But is this the same as $\sum_{i=1}^{\infty}{|(x,e_i)|^2}$?
 
Mathematics news on Phys.org
Hey! :)

If I understand correctly, you're asking whether the following equality holds?
$$\sum_{i=1}^{\infty}{(x,e_i)^2} = \sum_{i=1}^{\infty}{|(x,e_i)|^2}$$

If so, you may want to consider that for any real number $a$, we have that:
$$a^2 = |a|^2$$
This is true for both positive and negative $a$.
 
I like Serena said:
Hey! :)

If I understand correctly, you're asking whether the following equality holds?
$$\sum_{i=1}^{\infty}{(x,e_i)^2} = \sum_{i=1}^{\infty}{|(x,e_i)|^2}$$

If so, you may want to consider that for any real number $a$, we have that:
$$a^2 = |a|^2$$
This is true for both positive and negative $a$.

Ok! I got it! Thank you! (Smile)
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Back
Top