- #1
Zoey93
- 15
- 0
Hey guys,
I really need help in revising my Axiom 6 for my Linear Algebra course. My professor said, "You need to refine your statement. You want to show rx1 and rx2 are real numbers. You should not state they are real numbers."
Here is my work:
Proof of Axiom 6: rX is in R2 for X in R2 (closure under scalar multiplication)
•Let vector X in R2 be represented by X=(x1, x2) where x1 and x2 are real numbers because all the coordinates have to be real for the vector to be in R2.
•rX= r (x1, x2) by substituting coordinate form of vectors.
•= (rx1, rx2) by the definition of scalar multiplication.
•Being closed under scalar multiplication means that vectors in a vector space, when multiplied by a scalar (any real number), it still belongs to the same vector space. Therefore, since rx1 and rx2 are real numbers and their scalar multiple “r” is also a real number, then by the definition of closure under multiplication, the coordinate of this vector is real.
•Thus, this coordinate has real numbers, so the vector rX is in R2.
I really need help in revising my Axiom 6 for my Linear Algebra course. My professor said, "You need to refine your statement. You want to show rx1 and rx2 are real numbers. You should not state they are real numbers."
Here is my work:
Proof of Axiom 6: rX is in R2 for X in R2 (closure under scalar multiplication)
•Let vector X in R2 be represented by X=(x1, x2) where x1 and x2 are real numbers because all the coordinates have to be real for the vector to be in R2.
•rX= r (x1, x2) by substituting coordinate form of vectors.
•= (rx1, rx2) by the definition of scalar multiplication.
•Being closed under scalar multiplication means that vectors in a vector space, when multiplied by a scalar (any real number), it still belongs to the same vector space. Therefore, since rx1 and rx2 are real numbers and their scalar multiple “r” is also a real number, then by the definition of closure under multiplication, the coordinate of this vector is real.
•Thus, this coordinate has real numbers, so the vector rX is in R2.