- #36
Hak
- 709
- 56
According to Gauss's Theorem for the magnetic field, we have that the divergence of [tex]\displaystyle \textbf{B}[/tex] is equal to [tex]0[/tex]: the total magnetic field flux through a closed surface non-secanting the solenoid is zero. Applying Gauss's Theorem to a spherical collinear distribution to the solenoid with radius [tex]R[/tex] and centered on the center of the base of the multiple-winding coil, the total magnetic field across that surface is given by the difference between the flux [tex]\displaystyle \Phi_0 = \Phi_{inside}[/tex] of the magnetic field [tex]\displaystyle B_0 = B_{inside} = \mu_0 nI[/tex] at the centre of the sphere-solenoid and the flux [tex]\Phi_R[/tex] of the radial magnetic field [tex]B_R[/tex] through the coil.
The flux [tex]\Phi_0[/tex] is given by: [tex]\displaystyle \Phi_0 = B_0 S_{circle}[/tex], where [tex]\displaystyle S_{circle} = \pi r^2[/tex] is the surface of the superconducting loop. So: [tex]\displaystyle \Phi_0 = \mu_0 n \pi I r^2[/tex].
The flux [tex]\Phi_R[/tex] is given by: [tex]\displaystyle \Phi_R = B_R S_{sphere}[/tex], where [tex]\displaystyle S_{sphere} = 4 \pi R^2[/tex] is the surface of the sphere-solenoid. So: [tex]\displaystyle \Phi_R = B_R \cdot 4 \pi R^2[/tex].
So, we obtain:
[tex]\displaystyle \nabla \cdot \textbf{B}= 0[/tex] [tex]\Rightarrow[/tex] [tex]\displaystyle \Phi_{tot} = 0[/tex] [tex]\Rightarrow[/tex] [tex]\displaystyle \Phi_0 - \Phi_R = 0[/tex] [tex]\Rightarrow[/tex] [tex]\displaystyle \Phi_0 = \Phi_R[/tex] [tex]\Rightarrow[/tex] [tex]\displaystyle \mu_0 n \pi I r^2 = B_R \cdot 4 \pi R^2[/tex] [tex]\Rightarrow[/tex] [tex]\displaystyle \boxed{B_R = \frac{\mu_0 n I r^2}{4 R^2}}[/tex].
The flux [tex]\Phi_0[/tex] is given by: [tex]\displaystyle \Phi_0 = B_0 S_{circle}[/tex], where [tex]\displaystyle S_{circle} = \pi r^2[/tex] is the surface of the superconducting loop. So: [tex]\displaystyle \Phi_0 = \mu_0 n \pi I r^2[/tex].
The flux [tex]\Phi_R[/tex] is given by: [tex]\displaystyle \Phi_R = B_R S_{sphere}[/tex], where [tex]\displaystyle S_{sphere} = 4 \pi R^2[/tex] is the surface of the sphere-solenoid. So: [tex]\displaystyle \Phi_R = B_R \cdot 4 \pi R^2[/tex].
So, we obtain:
[tex]\displaystyle \nabla \cdot \textbf{B}= 0[/tex] [tex]\Rightarrow[/tex] [tex]\displaystyle \Phi_{tot} = 0[/tex] [tex]\Rightarrow[/tex] [tex]\displaystyle \Phi_0 - \Phi_R = 0[/tex] [tex]\Rightarrow[/tex] [tex]\displaystyle \Phi_0 = \Phi_R[/tex] [tex]\Rightarrow[/tex] [tex]\displaystyle \mu_0 n \pi I r^2 = B_R \cdot 4 \pi R^2[/tex] [tex]\Rightarrow[/tex] [tex]\displaystyle \boxed{B_R = \frac{\mu_0 n I r^2}{4 R^2}}[/tex].