- #1
Dustinsfl
- 2,281
- 5
$$
\varphi(x) = A\cos x\sqrt{\lambda} + B\frac{\sin x\sqrt{\lambda}}{\sqrt{\lambda}}
$$
$$
\text{B.C.} = \begin{cases} u(0,t) = u(L,t)\\u_x(0,t) = u_x(L,t)\end{cases}
$$
Which leads to
$$
A(1 - \cos L\sqrt{\lambda}) = B\frac{\sin L\sqrt{\lambda}}{\sqrt{\lambda}} \quad \text{and} \quad B(1 - \cos L\sqrt{\lambda}) = -A\sqrt{\lambda}\sin L\sqrt{\lambda}
$$
I solved for B and obtained
$$
B = \frac{-A\sqrt{\lambda}\sin L\sqrt{\lambda}}{1 - \cos L\sqrt{\lambda}}.
$$
From this, I can substitute and get
$$
A\left[(1 - \cos L\sqrt{\lambda})^2 - \sin^2 L\sqrt{\lambda}\right] = 0
$$
So can I conclude A = 0? I am having a struggle to find A and B here so I can get the eigenfunction.
\varphi(x) = A\cos x\sqrt{\lambda} + B\frac{\sin x\sqrt{\lambda}}{\sqrt{\lambda}}
$$
$$
\text{B.C.} = \begin{cases} u(0,t) = u(L,t)\\u_x(0,t) = u_x(L,t)\end{cases}
$$
Which leads to
$$
A(1 - \cos L\sqrt{\lambda}) = B\frac{\sin L\sqrt{\lambda}}{\sqrt{\lambda}} \quad \text{and} \quad B(1 - \cos L\sqrt{\lambda}) = -A\sqrt{\lambda}\sin L\sqrt{\lambda}
$$
I solved for B and obtained
$$
B = \frac{-A\sqrt{\lambda}\sin L\sqrt{\lambda}}{1 - \cos L\sqrt{\lambda}}.
$$
From this, I can substitute and get
$$
A\left[(1 - \cos L\sqrt{\lambda})^2 - \sin^2 L\sqrt{\lambda}\right] = 0
$$
So can I conclude A = 0? I am having a struggle to find A and B here so I can get the eigenfunction.