Coefficients in expansions of a vector potential

In summary, the conversation discusses two different expressions for the vector potential, each with a different constant coefficient. This is due to different conventions used by authors in defining the Fourier transform. The constant coefficients do not affect the overall meaning of the expressions.
  • #1
Haorong Wu
420
90
TL;DR Summary
Why the coefficients in expansions of a vector potential are different in different papers?
I have seen two expansions of a vector potential,

$$\mathbf A=\sum_\sigma \int \frac{d^3k}{(16 \pi^3 |\mathbf k|)^{1/2}} [\epsilon_\sigma(\mathbf k) \alpha_\sigma (\mathbf k) e^{i \mathbf k \cdot \mathbf x}+c.c.],$$
and
$$\mathbf A=\sum_\sigma \int \frac{d^3k}{ (2 \pi)^3(2 |\mathbf k|)^{1/2}} [\epsilon_\sigma(\mathbf k) \alpha_\sigma (\mathbf k) e^{i \mathbf k \cdot \mathbf x}+c.c.],$$
where ##\epsilon_\sigma## are polarizations, ##\alpha_\sigma (\mathbf k)## are amplitudes.

My problem is the two coefficients ## (2 \pi)^{3/2}## and ## (2 \pi)^3## in these two expressions, respectively. Why they are different?

I do not remember where I have read something about it, that it is related to the definition of Fourier transform.

Thanks for any hints.
 
  • Like
Likes Delta2
Physics news on Phys.org
  • #2
The constant coefficients don’t matter. They are only there for convenience. They are different because the two different authors disagreed on which was most convenient.
 
  • Like
Likes Delta2
  • #3
It's just a question of conventions. You have as many normalization conventions in the Fourier mode decomposition of (quantum) fields you have authors of textbooks and papers (or even more ;-)).
 
  • Like
Likes Delta2 and Dale
  • #4
Physicists usually define the FT as ##f(x)=\int...F(k)##,and mathematicians
use ##f(x)=(2\pi)^{-1/2}\int##.
 
  • Like
Likes Delta2
  • #5
Well, there are many types of physicists and all define their FTs differently. Sometimes the convention changes even in different subfields of physics.

E.g., in non-relativistic quantum mechanics one usually defines the FT between position and momentum (or rather "wave-vector") representation in a symmetric way, i.e., as unitary transformations from ##\mathrm{L}^2 \rightarrow \mathrm{L}^2## (for 1D motion):
$$\psi(x)=\int_{-\infty}^{\infty} \mathrm{d} k \frac{1}{\sqrt{2 \pi}} \tilde{\psi}(k) \exp(\mathrm{i} k x) \; \Leftrightarrow \; \tilde{\psi}(k)=\int_{-\infty}^{\infty} \mathrm{d} x \frac{1}{\sqrt{2 \pi}} \psi(x) \exp(-\mathrm{i} k x).$$
In relativistic (Q)FT most physicists use
$$\psi(x)=\int_{-\infty}^{\infty} \mathrm{d} k \frac{1}{2 \pi} \tilde{\psi}(k) \exp(\mathrm{i} k x) \; \Leftrightarrow \; \tilde{\psi}(k)=\int_{-\infty}^{\infty} \mathrm{d} x \psi(x) \exp(-\mathrm{i} k x).$$
For the FT wrt. time vs. angular frequency you have the same conventions but with the opposite signs in the exponentials. That's because one usually has to solve wave equations and likes to have ##k## the direction of the wave's phase velocity and not ##-k##.

In many engineering texts this signs in the exponential are reversed ;-)).

In short, it's a mess, and one must be careful when reading texts to make sure to figure out, which convention is used.
 
  • Like
Likes Delta2
  • #6
Thank you all! It is clear now.
 
  • Like
Likes vanhees71 and Delta2
  • #7
The different constants shouldn't trouble you a lot. Unless of course the constants present in formulas have dimensions. In this case they are plain numbers, no dimensions involved.
 

Similar threads

Replies
4
Views
970
Replies
36
Views
5K
Replies
1
Views
2K
Replies
1
Views
866
Replies
3
Views
1K
Replies
30
Views
2K
Replies
21
Views
2K
Back
Top