- #1
Shen712
- 12
- 0
- TL;DR Summary
- How are the coefficients in the Schrodinger equation and the momentum operator determined?
The Schrodinger equation is
$$
i\hbar \frac{\partial\Psi}{\partial t} = -\frac{\hbar^{2}}{2m} \frac{\partial^{2}\Psi}{\partial x^{2}} + V \Psi
$$
Why is the coeffient on the left-hand side ##\hbar##, not ##\frac{\hbar}{2}## or ##i\frac{\hbar}{3}## or something like these
Besides, in quantum mechanics, the momentum operator is defined to be
$$
p \rightarrow -i\hbar \frac{\partial}{\partial x}
$$
Again, why is the coefficient ##-i\hbar##, not ##-i\frac{\hbar}{2}## or ##-i\frac{\hbar}{3}## or something like these?
[Mentor's note: post edited to fix some Latex formatting]
$$
i\hbar \frac{\partial\Psi}{\partial t} = -\frac{\hbar^{2}}{2m} \frac{\partial^{2}\Psi}{\partial x^{2}} + V \Psi
$$
Why is the coeffient on the left-hand side ##\hbar##, not ##\frac{\hbar}{2}## or ##i\frac{\hbar}{3}## or something like these
Besides, in quantum mechanics, the momentum operator is defined to be
$$
p \rightarrow -i\hbar \frac{\partial}{\partial x}
$$
Again, why is the coefficient ##-i\hbar##, not ##-i\frac{\hbar}{2}## or ##-i\frac{\hbar}{3}## or something like these?
[Mentor's note: post edited to fix some Latex formatting]
Last edited by a moderator: