CptXray
- 22
- 3
- TL;DR
- I have a weird Hamiltonian and I can't find the evolution of coherent state
Given the hamiltonian:
<br /> \hat{H} = \hbar \omega_{0} \hat{a}^{+}\hat{a} + \chi (\hat{a}^{+}\hat{a})^2,<br />
where ##\hat{a}^{+}##, ##\hat{a}## are creation and annihilation operators.
Find evolution of the state ##|\psi(t) \rangle##, knowing that initial state ##|\psi(0)\rangle = |\alpha\rangle##, where ##|\alpha\rangle## is a coherent state.
So, in Schrodinger picture:
<br /> |\psi(t)\rangle = \hat{U}|\psi(0)\rangle = \hat{U}|\alpha\rangle<br />
Evolution operator:
<br /> \hat{U} = e^{-i\hat{H}t} = e^{-i\omega_{0}t\hat{n} - i\frac{\chi}{\hbar} \hat{n}^2} = e^{-i\omega_{0}t\hat{n}}e^{- i\frac{\chi}{\hbar} \hat{n}^2},<br />
in the last equality I used BCH formula.
Expanding coherent state:
<br /> |\alpha\rangle = e^{-|\alpha|^2/2}\sum_{n}\frac{\alpha^n}{\sqrt{n!}}|n\rangle<br />
So, the evolution of the initial state is:
<br /> |\psi(t)\rangle = e^{-i\omega_{0}t\hat{n}}e^{- i\frac{\chi}{\hbar} \hat{n}^2} e^{-|\alpha|^2/2}\sum_{n}\frac{\alpha^n}{\sqrt{n!}}|n\rangle.<br />
By expanding the exponents (from right to left) i get that nasty ##n^2## term and I can't recreate the state.
<br /> e^{-|\alpha|^2/2}\sum_{n}e^{-i\chi t / \hbar n^2}e^{-i\omega_{0}tn}\frac{\alpha^n}{\sqrt{n!}}|n\rangle.<br />
<br /> \hat{H} = \hbar \omega_{0} \hat{a}^{+}\hat{a} + \chi (\hat{a}^{+}\hat{a})^2,<br />
where ##\hat{a}^{+}##, ##\hat{a}## are creation and annihilation operators.
Find evolution of the state ##|\psi(t) \rangle##, knowing that initial state ##|\psi(0)\rangle = |\alpha\rangle##, where ##|\alpha\rangle## is a coherent state.
So, in Schrodinger picture:
<br /> |\psi(t)\rangle = \hat{U}|\psi(0)\rangle = \hat{U}|\alpha\rangle<br />
Evolution operator:
<br /> \hat{U} = e^{-i\hat{H}t} = e^{-i\omega_{0}t\hat{n} - i\frac{\chi}{\hbar} \hat{n}^2} = e^{-i\omega_{0}t\hat{n}}e^{- i\frac{\chi}{\hbar} \hat{n}^2},<br />
in the last equality I used BCH formula.
Expanding coherent state:
<br /> |\alpha\rangle = e^{-|\alpha|^2/2}\sum_{n}\frac{\alpha^n}{\sqrt{n!}}|n\rangle<br />
So, the evolution of the initial state is:
<br /> |\psi(t)\rangle = e^{-i\omega_{0}t\hat{n}}e^{- i\frac{\chi}{\hbar} \hat{n}^2} e^{-|\alpha|^2/2}\sum_{n}\frac{\alpha^n}{\sqrt{n!}}|n\rangle.<br />
By expanding the exponents (from right to left) i get that nasty ##n^2## term and I can't recreate the state.
<br /> e^{-|\alpha|^2/2}\sum_{n}e^{-i\chi t / \hbar n^2}e^{-i\omega_{0}tn}\frac{\alpha^n}{\sqrt{n!}}|n\rangle.<br />