- #1
CptXray
- 23
- 3
- TL;DR Summary
- I have a weird Hamiltonian and I can't find the evolution of coherent state
Given the hamiltonian:
[tex]
\hat{H} = \hbar \omega_{0} \hat{a}^{+}\hat{a} + \chi (\hat{a}^{+}\hat{a})^2,
[/tex]
where ##\hat{a}^{+}##, ##\hat{a}## are creation and annihilation operators.
Find evolution of the state ##|\psi(t) \rangle##, knowing that initial state ##|\psi(0)\rangle = |\alpha\rangle##, where ##|\alpha\rangle## is a coherent state.
So, in Schrodinger picture:
[tex]
|\psi(t)\rangle = \hat{U}|\psi(0)\rangle = \hat{U}|\alpha\rangle
[/tex]
Evolution operator:
[tex]
\hat{U} = e^{-i\hat{H}t} = e^{-i\omega_{0}t\hat{n} - i\frac{\chi}{\hbar} \hat{n}^2} = e^{-i\omega_{0}t\hat{n}}e^{- i\frac{\chi}{\hbar} \hat{n}^2},
[/tex]
in the last equality I used BCH formula.
Expanding coherent state:
[tex]
|\alpha\rangle = e^{-|\alpha|^2/2}\sum_{n}\frac{\alpha^n}{\sqrt{n!}}|n\rangle
[/tex]
So, the evolution of the initial state is:
[tex]
|\psi(t)\rangle = e^{-i\omega_{0}t\hat{n}}e^{- i\frac{\chi}{\hbar} \hat{n}^2} e^{-|\alpha|^2/2}\sum_{n}\frac{\alpha^n}{\sqrt{n!}}|n\rangle.
[/tex]
By expanding the exponents (from right to left) i get that nasty ##n^2## term and I can't recreate the state.
[tex]
e^{-|\alpha|^2/2}\sum_{n}e^{-i\chi t / \hbar n^2}e^{-i\omega_{0}tn}\frac{\alpha^n}{\sqrt{n!}}|n\rangle.
[/tex]
[tex]
\hat{H} = \hbar \omega_{0} \hat{a}^{+}\hat{a} + \chi (\hat{a}^{+}\hat{a})^2,
[/tex]
where ##\hat{a}^{+}##, ##\hat{a}## are creation and annihilation operators.
Find evolution of the state ##|\psi(t) \rangle##, knowing that initial state ##|\psi(0)\rangle = |\alpha\rangle##, where ##|\alpha\rangle## is a coherent state.
So, in Schrodinger picture:
[tex]
|\psi(t)\rangle = \hat{U}|\psi(0)\rangle = \hat{U}|\alpha\rangle
[/tex]
Evolution operator:
[tex]
\hat{U} = e^{-i\hat{H}t} = e^{-i\omega_{0}t\hat{n} - i\frac{\chi}{\hbar} \hat{n}^2} = e^{-i\omega_{0}t\hat{n}}e^{- i\frac{\chi}{\hbar} \hat{n}^2},
[/tex]
in the last equality I used BCH formula.
Expanding coherent state:
[tex]
|\alpha\rangle = e^{-|\alpha|^2/2}\sum_{n}\frac{\alpha^n}{\sqrt{n!}}|n\rangle
[/tex]
So, the evolution of the initial state is:
[tex]
|\psi(t)\rangle = e^{-i\omega_{0}t\hat{n}}e^{- i\frac{\chi}{\hbar} \hat{n}^2} e^{-|\alpha|^2/2}\sum_{n}\frac{\alpha^n}{\sqrt{n!}}|n\rangle.
[/tex]
By expanding the exponents (from right to left) i get that nasty ##n^2## term and I can't recreate the state.
[tex]
e^{-|\alpha|^2/2}\sum_{n}e^{-i\chi t / \hbar n^2}e^{-i\omega_{0}tn}\frac{\alpha^n}{\sqrt{n!}}|n\rangle.
[/tex]