- #1
lkh1986
- 99
- 0
Homework Statement
Given a matrix A. So I can reduce A to ref(A). Let's say in ref(A), the columns that contain leading ones are column 1, 3, and 5. True or false:
(a) Columns 1, 3, and 5 from ref(A) form the column space of ref(A).
(b) The corresponding column 1, 3, and 5 from the original matrix A form the column space of matrix A.
(c) Columns 1, 3, and 5 from ref(A) form the column space of the matrix A.
(d) The corresponding column 1, 3, and 5 from the original matrix A form the column space of ref(A).
Homework Equations
The Attempt at a Solution
(a) and (b) are straight forward and hence, both are true. I think (c) is false. Not sure about (d) though.
For (c), I have a specific counter example. I have column space of ref(A) is something like {[1 0 0 0], [0 1 0 0], [0 0 1 0]}, whereas the column space of the original matrix A is {[1 3 2 -1], [-2 2 3 2], [3 1 2 4]}. Notice that the 4th entry for the space spanned by ref(A) will always be 0, but it's possible to have a non-zero value for the space spanned by the column space, if the answers are taken from the original matrix A.