- #1
CGandC
- 326
- 34
I have a question regarding to combinatorial proofs and predicate logic. It seems to me that in some combinatorial proofs there is a use of contraposition ( although not explicitly stated in the books where I've read so far ), for example If we to prove that ## C(n,k) = C(n,n-k) ## combinatorically, the explanation is:
" (1) we have ## C(n,k) ## ways to create k subsets
(2) we have ## C(n,n-k) ## ways to not create k subsets
And since both ways of counting are equivalent, we finished. "
However, why these two statements ( statements (1) and (2) ) are equivalent? is it because "## C(n,n-k) ## ways to not create k subsets" is the contrapositive of " ## C(n,k) ## ways to create k subsets " ?
But how do you even find the contrapositive of a sentence like " ## C(n,k) ## ways to create k subsets "? ( it doesn't seem like an implication to me )
" (1) we have ## C(n,k) ## ways to create k subsets
(2) we have ## C(n,n-k) ## ways to not create k subsets
And since both ways of counting are equivalent, we finished. "
However, why these two statements ( statements (1) and (2) ) are equivalent? is it because "## C(n,n-k) ## ways to not create k subsets" is the contrapositive of " ## C(n,k) ## ways to create k subsets " ?
But how do you even find the contrapositive of a sentence like " ## C(n,k) ## ways to create k subsets "? ( it doesn't seem like an implication to me )