- #1
gumi_kr
- 11
- 0
Homework Statement
Let [tex]R ^{M} _{P}= \sum_{s=0}^{P} {M+1 \choose s}[/tex], for [tex]0 \leqslant P \leqslant M [/tex], [tex]P,M\in \mathbb{N}[/tex].
Proove that:
[tex] \sum_{q=0}^{M}R^{M}_{q}\cdot R^{M}_{M-q}=(2M+1) {2M \choose M}[/tex]
and give it's combinatorical idea.
I'm trying to solve this for 3 days - please help..