- #1
oliveriandrea
- 9
- 0
Hello,
i try to prove that
∂μFμ[itex]\nu[/itex] + ig[Aμ, Fμ[itex]\nu[/itex]] = [Dμ,Fμ[itex]\nu[/itex]]
with the Dμ = ∂μ + igAμ
but i have a problem with the term Fμ[itex]\nu[/itex]∂μ ...
i try to demonstrate that is nil, but i don't know if it's right...
Fμ[itex]\nu[/itex]∂μ [itex]\Psi[/itex] = [itex]\int[/itex] (∂[itex]\nu[/itex]Fμ[itex]\nu[/itex]) (∂μ[itex]\Psi[/itex]) + [itex]\int[/itex] Fμ[itex]\nu[/itex]∂μ∂[itex]\nu[/itex] [itex]\Psi[/itex] = (∂[itex]\nu[/itex]Fμ[itex]\nu[/itex]) [[itex]\Psi[/itex] ]∞∞ - [itex]\int[/itex][itex]\Psi[/itex]∂μ∂[itex]\nu[/itex]Fμ[itex]\nu[/itex] = 0
with [itex]\Psi[/itex] a smooth function, nil at infinity
if it's wrong please do you post the right answers? and why it is wrong...
thank you
i try to prove that
∂μFμ[itex]\nu[/itex] + ig[Aμ, Fμ[itex]\nu[/itex]] = [Dμ,Fμ[itex]\nu[/itex]]
with the Dμ = ∂μ + igAμ
but i have a problem with the term Fμ[itex]\nu[/itex]∂μ ...
i try to demonstrate that is nil, but i don't know if it's right...
Fμ[itex]\nu[/itex]∂μ [itex]\Psi[/itex] = [itex]\int[/itex] (∂[itex]\nu[/itex]Fμ[itex]\nu[/itex]) (∂μ[itex]\Psi[/itex]) + [itex]\int[/itex] Fμ[itex]\nu[/itex]∂μ∂[itex]\nu[/itex] [itex]\Psi[/itex] = (∂[itex]\nu[/itex]Fμ[itex]\nu[/itex]) [[itex]\Psi[/itex] ]∞∞ - [itex]\int[/itex][itex]\Psi[/itex]∂μ∂[itex]\nu[/itex]Fμ[itex]\nu[/itex] = 0
with [itex]\Psi[/itex] a smooth function, nil at infinity
if it's wrong please do you post the right answers? and why it is wrong...
thank you