- #1
spaghetti3451
- 1,344
- 34
Consider the rotation group ##SO(3)##.
I know that ##R_{x}(\phi) R_{z}(\theta) - R_{z}(\theta) R_{x} (\phi)## is a commutator?
But can this be called a commutator ##R_{z}(\delta \theta) R_{x}(\delta \phi) R_{z}^{-1}(\delta \theta) R_{x}^{-1} (\delta \phi)##?
I know that ##R_{x}(\phi) R_{z}(\theta) - R_{z}(\theta) R_{x} (\phi)## is a commutator?
But can this be called a commutator ##R_{z}(\delta \theta) R_{x}(\delta \phi) R_{z}^{-1}(\delta \theta) R_{x}^{-1} (\delta \phi)##?