- #1
maverick280857
- 1,789
- 5
Hi everyone
How do I show that the expression
[tex]
\sum_{b'}|\langle c'|b'\rangle|^{2}|\langle b'|a'\rangle|^{2} = \sum_{b'}\langle c'|b'\rangle\langle b'|a'\rangle \langle a'|b'\rangle \langle b'|c'\rangle
[/tex]
equals the expression
[tex]|\langle c'|a'\rangle|^{2} = |\sum_{b'}\langle c'|b'\rangle \langle b'|a'\rangle|^{2} = \sum_{b'}\sum_{b''}\langle c'|b'\rangle \langle b'|a'\rangle \langle a'|b'' \rangle \langle b''|c'\rangle[/tex]
when either
[tex][A,B] = 0[/tex]
or
[tex][B,C] = 0[/itex]
I tried this but the algebra didn't work out. Do I just equate the summands or is there something else to be done?
If I do that, I get just
[tex]\sum_{b''}\langle c'|b'\rangle \langle b'|a'\rangle \langle a'|b'' \rangle \langle b''|c'\rangle = \langle c'|b'\rangle\langle b'|a'\rangle \langle a'|b'\rangle \langle b'|c'\rangle[/tex]
Thanks in advance.
Cheers
How do I show that the expression
[tex]
\sum_{b'}|\langle c'|b'\rangle|^{2}|\langle b'|a'\rangle|^{2} = \sum_{b'}\langle c'|b'\rangle\langle b'|a'\rangle \langle a'|b'\rangle \langle b'|c'\rangle
[/tex]
equals the expression
[tex]|\langle c'|a'\rangle|^{2} = |\sum_{b'}\langle c'|b'\rangle \langle b'|a'\rangle|^{2} = \sum_{b'}\sum_{b''}\langle c'|b'\rangle \langle b'|a'\rangle \langle a'|b'' \rangle \langle b''|c'\rangle[/tex]
when either
[tex][A,B] = 0[/tex]
or
[tex][B,C] = 0[/itex]
I tried this but the algebra didn't work out. Do I just equate the summands or is there something else to be done?
If I do that, I get just
[tex]\sum_{b''}\langle c'|b'\rangle \langle b'|a'\rangle \langle a'|b'' \rangle \langle b''|c'\rangle = \langle c'|b'\rangle\langle b'|a'\rangle \langle a'|b'\rangle \langle b'|c'\rangle[/tex]
Thanks in advance.
Cheers