- #1
nazmulhasanshipon
- 40
- 3
Imagine the two terminal of a *parallel-plate capacitor* are connected to the two terminal of a battery with electric potential difference #V#. If the capacitance of the capacitor is #C#, and the area of each plate is $A$. In this process would the energy lost by the battery and the stored energy of the capacitor be the same or different? Please explain.
Someone pointed that the energy lost by the battery is #V=\frac{Qd}{\epsilon A}# (because the electric potential difference would be used to to raise the potential difference between the plates) and energy gained by the capacitor is #E=\frac{1}{2}QV#. And therefore they are different. But I doubt this since the energy should be conserved.
Someone pointed that the energy lost by the battery is #V=\frac{Qd}{\epsilon A}# (because the electric potential difference would be used to to raise the potential difference between the plates) and energy gained by the capacitor is #E=\frac{1}{2}QV#. And therefore they are different. But I doubt this since the energy should be conserved.