- #1
Saitama
- 4,243
- 93
Hello! I found the following problem on AOPS:
Which is larger,
$$\Large \frac{\int_{0}^{\frac{\pi}{2}}x^{2014}\sin^{2014}x\ dx}{\int_{0}^{\frac{\pi}{2}}x^{2013}\sin^{2013}x\ dx}\ \text{or}\ \frac{\int_{0}^{\frac{\pi}{2}}x^{2011}\sin^{2011}x\ dx}{\int_{0}^{\frac{\pi}{2}}x^{2012}\sin^{2012}x\ dx}\ ?$$
I don't really have much idea about the problem. I thought of defining:
$$I_n=\int_0^{\pi/2} x^n\sin^n x\,dx$$
From integration by parts, I got:
$$I_n=\left(\sin^n x \frac{x^{n+1}}{n+1}\right|_0^{\pi/2}-\int_0^{\pi/2} n\sin^{n-1} x \cos x \frac{x^{n+1}}{n+1}\,dx=-\frac{n}{n+1}\int_0^{\pi/2} x^{n+1}\sin^{n+1}x \frac{\cos x}{\sin^2 x}\,dx$$
but this doesn't help in obtaining a relation between $I_n$ and $I_{n-1}$. I am stuck here.
Any help is appreciated. Thanks!
Which is larger,
$$\Large \frac{\int_{0}^{\frac{\pi}{2}}x^{2014}\sin^{2014}x\ dx}{\int_{0}^{\frac{\pi}{2}}x^{2013}\sin^{2013}x\ dx}\ \text{or}\ \frac{\int_{0}^{\frac{\pi}{2}}x^{2011}\sin^{2011}x\ dx}{\int_{0}^{\frac{\pi}{2}}x^{2012}\sin^{2012}x\ dx}\ ?$$
I don't really have much idea about the problem. I thought of defining:
$$I_n=\int_0^{\pi/2} x^n\sin^n x\,dx$$
From integration by parts, I got:
$$I_n=\left(\sin^n x \frac{x^{n+1}}{n+1}\right|_0^{\pi/2}-\int_0^{\pi/2} n\sin^{n-1} x \cos x \frac{x^{n+1}}{n+1}\,dx=-\frac{n}{n+1}\int_0^{\pi/2} x^{n+1}\sin^{n+1}x \frac{\cos x}{\sin^2 x}\,dx$$
but this doesn't help in obtaining a relation between $I_n$ and $I_{n-1}$. I am stuck here.
Any help is appreciated. Thanks!