- #36
Jdo300
- 554
- 5
Hi Claude,
Thanks again for your help. I am an EE student but I haven't even had my first "formal" electronics class yet so all this stuff I am teaching myself for my personal experiments. Would you happen to know of any good sources I can check out to find out how to calculate the speed of a pulse through a transmission line with X amount of impedance? I'm not sure where to start looking but I need this information for some formulas I'm trying to develop.
I derived some formulas to calculate how long it would take a pulse to travel down a length of wire but at the moment, I’m assuming that all the pulses are traveling at the speed of light, c. So I need to revise this notion for my formulas to at least approximate the real deal more accurately. By the way, what is the formula to calculate the nth sub-harmonic frequency of a wave? The one I currently came up with is F(n) = c / (Pi * d * 2^n) where Pi*d is the distance the wave travels (around a loop in this case) and n is the sub-harmonic number. I want this function to calculate the 1/n^2 harmonic for whatever the fundamental one is. What do you think?
Thanks,
Jason O
Thanks again for your help. I am an EE student but I haven't even had my first "formal" electronics class yet so all this stuff I am teaching myself for my personal experiments. Would you happen to know of any good sources I can check out to find out how to calculate the speed of a pulse through a transmission line with X amount of impedance? I'm not sure where to start looking but I need this information for some formulas I'm trying to develop.
I derived some formulas to calculate how long it would take a pulse to travel down a length of wire but at the moment, I’m assuming that all the pulses are traveling at the speed of light, c. So I need to revise this notion for my formulas to at least approximate the real deal more accurately. By the way, what is the formula to calculate the nth sub-harmonic frequency of a wave? The one I currently came up with is F(n) = c / (Pi * d * 2^n) where Pi*d is the distance the wave travels (around a loop in this case) and n is the sub-harmonic number. I want this function to calculate the 1/n^2 harmonic for whatever the fundamental one is. What do you think?
Thanks,
Jason O