- #1
A Story of a Student
- 8
- 1
- Homework Statement
- Find a ##z \in \mathbb{C}## such that ##log(1/z)\neq −log(z)##
- Relevant Equations
- ##\log(z)=\ln|z|+i\arg(z)##
I have reached a conclusion that no such z can be found. Are there any flaws in my argument? Or are there cases that aren't covered in this?
Attempt
##\log(\frac{1}{z})=\ln\frac{1}{|z|}+i\arg(\frac{1}{z})##
##-\log(z)=-\ln|z|-i\arg(z)##
For the real part ##\ln\frac{1}{|z|}=\ln1-\ln|z|=-\ln|z|##
For the imaginary part ##\arg(\frac{1}{|z|})=\arg(\frac{1}{z\overline z}\overline{z})=\arg(\frac{1}{|z|^2}\overline{z})=-\arg{z}##
Thus ##\log(\frac{1}{z})=-\log(z)## for ##z\in\mathbb{C}\backslash\{0\}##
Mentor note: Fixed the broken LaTeX. Log and Arg should not be capitalized.
Attempt
##\log(\frac{1}{z})=\ln\frac{1}{|z|}+i\arg(\frac{1}{z})##
##-\log(z)=-\ln|z|-i\arg(z)##
For the real part ##\ln\frac{1}{|z|}=\ln1-\ln|z|=-\ln|z|##
For the imaginary part ##\arg(\frac{1}{|z|})=\arg(\frac{1}{z\overline z}\overline{z})=\arg(\frac{1}{|z|^2}\overline{z})=-\arg{z}##
Thus ##\log(\frac{1}{z})=-\log(z)## for ##z\in\mathbb{C}\backslash\{0\}##
Mentor note: Fixed the broken LaTeX. Log and Arg should not be capitalized.
Last edited by a moderator: