- #1
latentcorpse
- 1,444
- 0
Let [itex]w_1,w_2 \in \mathbb{C}[/itex] and [itex]\gamma[/itex] be some smooth curve from [itex]w_1[/itex] to [itex]w_2[/itex].
Find [itex]\int_{\gamma} e^{\sin{z}} \cos{z} dz[/itex]
this is holomorphic on the entire copmlex plan so we can't use a residue theorem. furthermore, we can't assume [itex]\gamma[/itex] is a closed contour as we aren't told [itex]w_1=w_2[/itex] so it looks as if we're going to need to parameterise [itex]\gamma[/itex].
but we don't know what [itex]\gamma[/itex] looks like. however we do know that any two point in the copmlex plane can be joined by a finite number of horizontal and vertical lines so if we use instead of [itex]\gamma[/itex] a contour [itex]\gamma_1 \cup \gamma_2[/itex]
where [itex]\gamma_1[/itex] is horizontal and [itex]\gamma_2[/itex] is vertical. this is my thoughts so far but parameterising these was still going to be pretty difficult so i decided to check if I am on the right lines or not. any advice?
Find [itex]\int_{\gamma} e^{\sin{z}} \cos{z} dz[/itex]
this is holomorphic on the entire copmlex plan so we can't use a residue theorem. furthermore, we can't assume [itex]\gamma[/itex] is a closed contour as we aren't told [itex]w_1=w_2[/itex] so it looks as if we're going to need to parameterise [itex]\gamma[/itex].
but we don't know what [itex]\gamma[/itex] looks like. however we do know that any two point in the copmlex plane can be joined by a finite number of horizontal and vertical lines so if we use instead of [itex]\gamma[/itex] a contour [itex]\gamma_1 \cup \gamma_2[/itex]
where [itex]\gamma_1[/itex] is horizontal and [itex]\gamma_2[/itex] is vertical. this is my thoughts so far but parameterising these was still going to be pretty difficult so i decided to check if I am on the right lines or not. any advice?