- #1
notmuch
- 16
- 0
Complex Analysis--Path Integral
Let I(r) = Int(e^(iz)/z) over the "top half" of the circle of radius r, centered at the origin. Show that lim {r -> infty} I(r) = 0.
All given.
I was thinking of using the inequality |Int(e^(iz)/z)| <= Int(e^(-r*sin t)) from 0 to pi. I want to show that the right hand side of the inequality goes to zero as r -> infty. If so, then the problem should be solved. Thanks.
Homework Statement
Let I(r) = Int(e^(iz)/z) over the "top half" of the circle of radius r, centered at the origin. Show that lim {r -> infty} I(r) = 0.
Homework Equations
All given.
The Attempt at a Solution
I was thinking of using the inequality |Int(e^(iz)/z)| <= Int(e^(-r*sin t)) from 0 to pi. I want to show that the right hand side of the inequality goes to zero as r -> infty. If so, then the problem should be solved. Thanks.