- #1
Pablo315
- 2
- 0
Hi everyone.
Yesterday I had an exam, and I spent half the exam trying to solve this question.
Show that ##\left\langle\Psi\left(\vec{r}\right)\right|\hat{p_{y}^{2}}\left|\phi\left(\vec{r}\right)\right\rangle =\left\langle \phi\left(\vec{r}\right)\right|\hat{p_{y}^{2}}\left|\Psi\left(\vec{r}\right)\right\rangle##
However, I don't see how that is true. If we choose ##\Psi\left(\vec{r}\right)=i\phi\left(\vec{r}\right)##
then
##\left\langle \Psi\left(\vec{r}\right)\right|\hat{p_{y}^{2}}\left|\phi\left(\vec{r}\right)\right\rangle =\left\langle i\phi\left(\vec{r}\right)\right|\hat{p_{y}^{2}}\left|\phi\left(\vec{r}\right)\right\rangle =-i\left\langle \phi\left(\vec{r}\right)\right|\hat{p_{y}^{2}}\left|\phi\left(\vec{r}\right)\right\rangle ##
and
##\left\langle \phi\left(\vec{r}\right)\right|\hat{p_{y}^{2}}\left|\Psi\left(\vec{r}\right)\right\rangle =\left\langle \phi\left(\vec{r}\right)\right|\hat{p_{y}^{2}}\left|i\phi\left(\vec{r}\right)\right\rangle =i\left\langle \phi\left(\vec{r}\right)\right|\hat{p_{y}^{2}}\left|\phi\left(\vec{r}\right)\right\rangle ##
which clearly aren't the same. Am I missing something here?
Thank you!
Yesterday I had an exam, and I spent half the exam trying to solve this question.
Show that ##\left\langle\Psi\left(\vec{r}\right)\right|\hat{p_{y}^{2}}\left|\phi\left(\vec{r}\right)\right\rangle =\left\langle \phi\left(\vec{r}\right)\right|\hat{p_{y}^{2}}\left|\Psi\left(\vec{r}\right)\right\rangle##
However, I don't see how that is true. If we choose ##\Psi\left(\vec{r}\right)=i\phi\left(\vec{r}\right)##
then
##\left\langle \Psi\left(\vec{r}\right)\right|\hat{p_{y}^{2}}\left|\phi\left(\vec{r}\right)\right\rangle =\left\langle i\phi\left(\vec{r}\right)\right|\hat{p_{y}^{2}}\left|\phi\left(\vec{r}\right)\right\rangle =-i\left\langle \phi\left(\vec{r}\right)\right|\hat{p_{y}^{2}}\left|\phi\left(\vec{r}\right)\right\rangle ##
and
##\left\langle \phi\left(\vec{r}\right)\right|\hat{p_{y}^{2}}\left|\Psi\left(\vec{r}\right)\right\rangle =\left\langle \phi\left(\vec{r}\right)\right|\hat{p_{y}^{2}}\left|i\phi\left(\vec{r}\right)\right\rangle =i\left\langle \phi\left(\vec{r}\right)\right|\hat{p_{y}^{2}}\left|\phi\left(\vec{r}\right)\right\rangle ##
which clearly aren't the same. Am I missing something here?
Thank you!