- #1
AkilMAI
- 77
- 0
Define [tex]f(t)=e^{-t}[/tex] ont he interval [tex][-\pi,\pi)[/tex],and extend f to [itex]2\pi[/itex]-periodic.Find the complex
Fourier series of f.Then, apply Parseval's relation to f to evaluate
[tex]\sum^{\infty}_0 \frac{1}{1+k^{2}}[/tex]
For the first part when I calculate c_k [tex]\frac{1}{2\pi}\ \int^\pi_{-\pi} e^{-ikt-t}dt[/tex]...I get the following [tex]\frac{-e^{-(ik+1)\pi} + e^{(ik+1)\pi}}{2\pi(ik+1)}[/tex]...is there any way to simplify it?Also for the second part,how can I apply Parseval's relation to evaluate the sum?
Thanks in advance
Fourier series of f.Then, apply Parseval's relation to f to evaluate
[tex]\sum^{\infty}_0 \frac{1}{1+k^{2}}[/tex]
For the first part when I calculate c_k [tex]\frac{1}{2\pi}\ \int^\pi_{-\pi} e^{-ikt-t}dt[/tex]...I get the following [tex]\frac{-e^{-(ik+1)\pi} + e^{(ik+1)\pi}}{2\pi(ik+1)}[/tex]...is there any way to simplify it?Also for the second part,how can I apply Parseval's relation to evaluate the sum?
Thanks in advance