- #1
Dustinsfl
- 2,281
- 5
$\gamma$ is the unit circle oriented counterclockwise.
$\displaystyle\int_{\gamma}\dfrac{e^z}{z}dz$
$\gamma(t) = e^{it}$ for $0\leq t\leq 2\pi$
$\gamma'(t) = ie^{it}$
Using $\int_{\gamma} f(\gamma(t))\gamma'(t)dt$, I obtain
$\displaystyle i\int_0^{2\pi}e^{e^{it}}dt$
Not quite sure how to integrate this one.
$\displaystyle\int_{\gamma}\dfrac{e^z}{z}dz$
$\gamma(t) = e^{it}$ for $0\leq t\leq 2\pi$
$\gamma'(t) = ie^{it}$
Using $\int_{\gamma} f(\gamma(t))\gamma'(t)dt$, I obtain
$\displaystyle i\int_0^{2\pi}e^{e^{it}}dt$
Not quite sure how to integrate this one.