- #1
LCSphysicist
- 646
- 162
- Homework Statement
- .
- Relevant Equations
- .
$$\int_{0}^{2\pi } (1+2cost)^{n}cos(nt) dt$$
$$e^{it} = z, izdt = dz$$
$$\oint (1+e^{it}+e^{-it})^{n}\frac{e^{nit}+e^{-nit}}{2} \frac{dz}{iz} = \oint (1+z+z^{-1})^{n}\frac{z^{n}+z^{-n}}{2} \frac{dz}{iz}$$
$$\oint (z+z^{2}+1)^{n}\frac{z^{2n}+1}{z^{2n+1}} \frac{dz}{2i} = \pi Res = \pi \frac{d^{2n}}{(2n)! dz^{2n}}((z+z^{2}+1)^{n}(z^{2n}+1))$$
$$= \pi \sum \begin{pmatrix}
2n\\ \beta
\end{pmatrix} \frac{d^{\beta} {(z^{2n}+1)}}{dz^{\beta}(2n)!} \frac{d^{2n-\beta}}{dz^{2n-\beta}}(z+z^{2}+1)^{n}$$
Since the pole is at z=0, all terms above vanish apart from ##\beta = 2n##, in this case:
$$= \pi \frac{d^{2n} {(z^{2n}+1)}}{(2n)!dz^{2n}} \frac{d^{0}}{dz^{0}}(z+z^{2}+1)^{n} $$
$$= \pi \frac{(2n)!}{(2n)!} (1) = \pi $$
The answer provided by the book is ##2 \pi##
I can't really find the error i supposedly did :/
$$e^{it} = z, izdt = dz$$
$$\oint (1+e^{it}+e^{-it})^{n}\frac{e^{nit}+e^{-nit}}{2} \frac{dz}{iz} = \oint (1+z+z^{-1})^{n}\frac{z^{n}+z^{-n}}{2} \frac{dz}{iz}$$
$$\oint (z+z^{2}+1)^{n}\frac{z^{2n}+1}{z^{2n+1}} \frac{dz}{2i} = \pi Res = \pi \frac{d^{2n}}{(2n)! dz^{2n}}((z+z^{2}+1)^{n}(z^{2n}+1))$$
$$= \pi \sum \begin{pmatrix}
2n\\ \beta
\end{pmatrix} \frac{d^{\beta} {(z^{2n}+1)}}{dz^{\beta}(2n)!} \frac{d^{2n-\beta}}{dz^{2n-\beta}}(z+z^{2}+1)^{n}$$
Since the pole is at z=0, all terms above vanish apart from ##\beta = 2n##, in this case:
$$= \pi \frac{d^{2n} {(z^{2n}+1)}}{(2n)!dz^{2n}} \frac{d^{0}}{dz^{0}}(z+z^{2}+1)^{n} $$
$$= \pi \frac{(2n)!}{(2n)!} (1) = \pi $$
The answer provided by the book is ##2 \pi##
I can't really find the error i supposedly did :/