- #1
Darken1
- 6
- 0
Question 1:
(a) Show that the complex number i is a root of the equation
x^4 - 5x^3 + 7x^2 - 5x + 6 = 0
(b) Find the other roots of this equation
Work:
Well, I thought about factoring the equation into (x^2 + ...) (x^2+...) but I couldn't do it. Is there a method for that? Anyways the reason I wanted to do that was to use the quadratic formula afterwards where I guess one of the zeroes is x=i.Edit: Think I solved my own question 2 upon writing this
Question 2:
Let f(x) = (4-x^2)/(4-x^(1/2))
(a) State the largest possible domain for f.
(b )Solve the inequality f(x) greater than or equal to 1
Work:
Domain: [0,16) U (16,infinity)
x^(1/2) so x can't be negative (greater than or equal to 0) and it's a fraction so the denominator cannot equal to 0.
Multiplied denominator to the other side
4-x^2 >= 4-x^(1/2)
Eventually arrived to
x^2-x^(1/2) <=0 and 0<=x^2+x^(1/2)
Took the first equation and changed the first term
(x^(1/2))^4-x^(1/2)<=0
x<=1
(a) Show that the complex number i is a root of the equation
x^4 - 5x^3 + 7x^2 - 5x + 6 = 0
(b) Find the other roots of this equation
Work:
Well, I thought about factoring the equation into (x^2 + ...) (x^2+...) but I couldn't do it. Is there a method for that? Anyways the reason I wanted to do that was to use the quadratic formula afterwards where I guess one of the zeroes is x=i.Edit: Think I solved my own question 2 upon writing this
Question 2:
Let f(x) = (4-x^2)/(4-x^(1/2))
(a) State the largest possible domain for f.
(b )Solve the inequality f(x) greater than or equal to 1
Work:
Domain: [0,16) U (16,infinity)
x^(1/2) so x can't be negative (greater than or equal to 0) and it's a fraction so the denominator cannot equal to 0.
Multiplied denominator to the other side
4-x^2 >= 4-x^(1/2)
Eventually arrived to
x^2-x^(1/2) <=0 and 0<=x^2+x^(1/2)
Took the first equation and changed the first term
(x^(1/2))^4-x^(1/2)<=0
x<=1