MHB Complex numbers and conjugates

AI Thread Summary
The discussion revolves around proving that two complex numbers, z and w, must be conjugates given the equation (x-z)(x-w) = ax² + bx + c, where a, b, and c are real. The user correctly identifies that a = 1, -b = w + z, and c = wz. It is established that for the sum of the imaginary parts (q + s) to equal zero, s must equal -q, leading to the conclusion that the real parts (p and r) must also be equal. Ultimately, this demonstrates that z and w are indeed complex conjugates of each other.
Sean1
Messages
5
Reaction score
0
Hi everyone,

Can you please assist with the following problem?

The complex numbers z and w are such that for the real variable x,
(x-z)(x-w)=ax2+bx+c for real a,b and c.

By letting z=p+qi and w=r+si, prove that z and w must be conjugates of one another.So far, I have determined that a=1, -b=w+z and c=wz,
I know I need to show that q+s=0 and that p=r, but I am not sure how to proceed.

Thanks for reading my post.
 
Mathematics news on Phys.org
Sean said:
Hi everyone,

Can you please assist with the following problem?

The complex numbers z and w are such that for the real variable x,
(x-z)(x-w)=ax2+bx+c for real a,b and c.

By letting z=p+qi and w=r+si, prove that z and w must be conjugates of one another.So far, I have determined that a=1, -b=w+z and c=wz,
I know I need to show that q+s=0 and that p=r, but I am not sure how to proceed.

Thanks for reading my post.

Hi Sean,

The three equations you have obtained are correct. Substitute for $w$ and $z$ in these equations. For example,

\[-b=w+z\Rightarrow (p+qi)+(r+si)=-b\Rightarrow (p+r)+i(q+s)=-b\]

Since $-b$ is a real number what can you say about $q+s$ which is the imaginary part?
 
Sean said:
Hi everyone,

Can you please assist with the following problem?

The complex numbers z and w are such that for the real variable x,
(x-z)(x-w)=ax2+bx+c for real a,b and c.

By letting z=p+qi and w=r+si, prove that z and w must be conjugates of one another.So far, I have determined that a=1, -b=w+z and c=wz,
I know I need to show that q+s=0 and that p=r, but I am not sure how to proceed.

Thanks for reading my post.

Remember that b and c are real. The only way you can add two complex numbers to get a real number is if the imaginary parts cancel out, so $\displaystyle \begin{align*} \mathcal{I}\,(z) = -\mathcal{I}\,(w) \end{align*}$.

Now if you write $\displaystyle \begin{align*} z = p + \mathrm{i}\,q \end{align*}$ and $\displaystyle \begin{align*} w = r + \mathrm{i}\,s \end{align*}$ (where p,q,r,s are all real), then we have already shown that s = -q, giving $\displaystyle \begin{align*} w = r - \mathrm{i}\,q \end{align*}$. Multiplying z and w gives

$\displaystyle \begin{align*} w\,z &= \left( r - \mathrm{i}\,q \right) \left( p + \mathrm{i}\,q \right) \\ &= p\,r + \mathrm{i}\,q\,r - \mathrm{i}\,p\,q - \mathrm{i}^2\, q^2 \\ &= p\,r + q^2 + \mathrm{i} \, \left( q\,r - p\,q \right) \end{align*}$

For this to be real,

$\displaystyle \begin{align*} q\,r - p\,q &= 0 \\ q \, \left( r - p \right) &= 0 \\ q = 0 \textrm{ or } r - p &= 0 \\ q = 0 \textrm{ or } p &= r \end{align*}$

Therefore, if w and z are nonreal, $\displaystyle \begin{align*} \mathcal{R}\,(z) = \mathcal{R}\,(w) \end{align*}$.

This has shown that w and z must be complex conjugates.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...

Similar threads

Replies
1
Views
1K
Replies
2
Views
1K
Replies
1
Views
2K
Replies
13
Views
2K
Replies
5
Views
3K
Replies
2
Views
4K
Back
Top