MHB Complex Numbers VI: Finding Least Value of |z-2√2-4i|

AI Thread Summary
The discussion focuses on finding the least value of |z-2√2-4i| given the constraints |z-4i|≤√5 and π/4≤arg(z+4)≤π/2. Participants have sketched the loci on an Argand diagram and are exploring the intersection of these sets. The key challenge is determining the shortest distance from a point to a semi-disk, which involves identifying the complex number z_1 that minimizes this distance. There are also technical issues regarding the use of LaTeX for mathematical expressions. Ultimately, the goal is to find the exact form of z_1 and the corresponding least value.
Punch
Messages
44
Reaction score
0
Sketch on an Argand diagram the set of points satisfying both |z-4i|<=\sqrt{5} and \frac{\pi}{4}<=arg(z+4)<=\frac{\pi}{2}.

I have already sketched the 2 loci. The problem lies in the following part.

Hence find the least value of |z-2\sqrt{2}-4i|. Find, in exact form, the complex number z_1 represented by the point P that gives this least value.
 
Mathematics news on Phys.org
Punch said:
Hence find the least value of |z-2\sqrt{2}-4i|.
Over which set of z? The intersection defined in the first part? It seems that you need to find the shortest distance from a point to a semi-disk.

Why don't you wrap the [tex]...[/tex] tags around your formulas?
 
Evgeny.Makarov said:
Over which set of z? The intersection defined in the first part? It seems that you need to find the shortest distance from a point to a semi-disk.

Why don't you wrap the \(z_1\) tags around your formulas?

Yes, how do I then find the complex number z_1 in the following part?

I tried using the latex but they didnt seem to work
 
Punch said:
Yes, how do I then find the complex number z_1 in the following part?
See the following picture.

argand.png


Punch said:
I tried using the latex but they didnt seem to work
Type [tex]\frac{\pi}{4}\le\arg(z+4)\le\frac{\pi}{2}[/tex] to get \frac{\pi}{4}\le\arg(z+4)\le\frac{\pi}{2}.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...

Similar threads

Back
Top