- #1
Dustinsfl
- 2,281
- 5
Find the real functions \(u\) and \(v\) such that \(f = u + iv\) for \(f(z) = \arctan(z)\).
Does below work or make sense to do?
\[
\arctan(z) = \frac{1}{z} = \frac{1}{x+iy} = \frac{x}{x^2 + y^2} - i\frac{y}{x^2 + y^2}
\]
Does below work or make sense to do?
\[
\arctan(z) = \frac{1}{z} = \frac{1}{x+iy} = \frac{x}{x^2 + y^2} - i\frac{y}{x^2 + y^2}
\]