- #1
joypav
- 151
- 0
We define the Legendre polynomial $P_n$ by
$$P_n (z)=\frac{1}{2^nn!}\frac{d^n}{dz^n}(z^2-1)^n$$
Let $\omega$ be a smooth simple closed curve around z. Show that
$$P_n (z)=\frac{1}{2i\pi}\frac{1}{2^n}\int_\omega\frac{(w^2-1)^n}{(w-z)^{n+1}}dw$$
What I have:
We know $(w^2-1)^n$ is analytic on and inside $\omega$ and z lies within $\omega$.
So, by Cauchy's Formula,
$$\frac{1}{2i\pi}\frac{1}{2^n}\int_\omega\frac{(w^2-1)^n}{(w-z)^{n+1}}dw$$
$$=\frac{1}{2i\pi}\frac{1}{2^n}\frac{2i\pi}{n!}\frac{d^n}{dw^n}(w^2-1)^n\rvert_{w=z}$$
$$=\frac{1}{2^n}\frac{1}{n!}\frac{d^n}{dw^n}(w^2-1)^n\rvert_{w=z}$$
$$=\frac{1}{2^nn!}\frac{d^n}{dz^n}(z^2-1)^n=P_n(z)$$
Now, take $\omega$ to be the circle of radius $\sqrt{|z^2-1|}$ centered at z. Show that
$$P_n(z)=\frac{1}{2\pi}\int_0^{2\pi}\left(z+\sqrt{z^2-1}\cos(\theta)\right)^{\!n}\,d\theta$$
What I have:
I am confused about how to apply the previous problem. If I could get a push in the right direction I would be very appreciative!
$$P_n (z)=\frac{1}{2^nn!}\frac{d^n}{dz^n}(z^2-1)^n$$
Let $\omega$ be a smooth simple closed curve around z. Show that
$$P_n (z)=\frac{1}{2i\pi}\frac{1}{2^n}\int_\omega\frac{(w^2-1)^n}{(w-z)^{n+1}}dw$$
What I have:
We know $(w^2-1)^n$ is analytic on and inside $\omega$ and z lies within $\omega$.
So, by Cauchy's Formula,
$$\frac{1}{2i\pi}\frac{1}{2^n}\int_\omega\frac{(w^2-1)^n}{(w-z)^{n+1}}dw$$
$$=\frac{1}{2i\pi}\frac{1}{2^n}\frac{2i\pi}{n!}\frac{d^n}{dw^n}(w^2-1)^n\rvert_{w=z}$$
$$=\frac{1}{2^n}\frac{1}{n!}\frac{d^n}{dw^n}(w^2-1)^n\rvert_{w=z}$$
$$=\frac{1}{2^nn!}\frac{d^n}{dz^n}(z^2-1)^n=P_n(z)$$
Now, take $\omega$ to be the circle of radius $\sqrt{|z^2-1|}$ centered at z. Show that
$$P_n(z)=\frac{1}{2\pi}\int_0^{2\pi}\left(z+\sqrt{z^2-1}\cos(\theta)\right)^{\!n}\,d\theta$$
What I have:
I am confused about how to apply the previous problem. If I could get a push in the right direction I would be very appreciative!