- #1
Bashyboy
- 1,421
- 5
Homework Statement
Suppose that ##f## and ##g## are real-valued functions defined on all of ##\Bbb{R}##,##f## is measurable, and ##g## is continuous. Is the composition ##f \circ g## necessarily measurable?
Homework Equations
The Attempt at a Solution
Let ##c \in \Bbb{R}## be arbitrary. Then ##\{x \in \Bbb{R} ~|~ f(g(x)) > c \} = \{x \in g( \Bbb{R}) ~|~ f(x) > c \} \subseteq \{x \in \Bbb{R} ~|~ f(x) > c\}##, where the last set is measurable by our hypothesis. If ##g## were surjective, the first set would certainly be measurable, independently of whether ##g## is continuous, since equality would hold with the last set. This suggests that the statement isn't necessarily true. Another way would be to argue that ##g(\Bbb{R})## is a measurable, but apparently the continuous image of a measurable set isn't always measurable. So I suspect the statement isn't necessarily true, but I am having trouble finding a counterexample. I could use some help.