- #1
polarbears
- 23
- 0
1. Show that the set {f:R-{0,1}[tex]\rightarrow[/tex] R-{0,1}}, of functions under composition, is isomorphic to [tex]S _{3}[/tex]
[tex]f_{1} = x[/tex]
[tex]f_{2} = 1 - x[/tex]
[tex]f_{3} = \frac {1}{x}[/tex]
[tex]f_{4} = 1 - \frac {1}{x}[/tex]
[tex]f_{5} = \frac {1}{1 - x}[/tex]
[tex]f_{6} = \frac {x}{x - 1}[/tex]
I don't really understand what the problem is asking
[tex]f_{1} = x[/tex]
[tex]f_{2} = 1 - x[/tex]
[tex]f_{3} = \frac {1}{x}[/tex]
[tex]f_{4} = 1 - \frac {1}{x}[/tex]
[tex]f_{5} = \frac {1}{1 - x}[/tex]
[tex]f_{6} = \frac {x}{x - 1}[/tex]
Homework Equations
The Attempt at a Solution
I don't really understand what the problem is asking