MHB Composition of Transformations

Click For Summary
Applying two reflections in geometry results in either a translation or a rotation, depending on the relationship between the lines of reflection. When reflecting across two parallel lines, the outcome is equivalent to a translation, moving the figure a distance equal to twice the gap between the lines. Conversely, reflecting across two intersecting lines produces a rotation around the intersection point, with the angle of rotation being twice the angle between the lines. The discussion emphasizes the need for a clearer explanation of these transformations, particularly through coordinate systems and matrix calculations. Understanding these properties is crucial for comprehending the nature of geometric transformations.
Zoey93
Messages
15
Reaction score
0
Here is the question:

Provide a logical argument that demonstrates that when applying any two reflections, the outcome will always either be equivalent to a rotation or a translation.

This is what I came up with:

•Translation

A reflection is defined as, “a transformation in which a geometric figure is reflected across a line, creating a mirror image. The line is called the axis of reflection” (uCertify). So, in order for a transformation to be a reflection there must be a line or lines representing the axis of reflection. We know that lines in a plane must either intersect or be parallel. Reflecting a figure in a line and then reflecting the image in a parallel line has the same result as translating the figure in a direction perpendicular to the reflection lines for a distance equal to twice the distance between the lines. In other words, the product of two reflections across parallel lines will always produce a translation.

•Rotation
A reflection is defined as, “a transformation in which a geometric figure is reflected across a line, creating a mirror image. The line is called the axis of reflection” (uCertify). The line is called the axis of reflection” (uCertify). So, in order for a transformation to be a reflection there must be a line or lines representing the axis of reflection. We know that lines in a plane must either intersect or be parallel. Reflecting a figure in a line and then reflecting the image in an intersecting line has the same results as rotating the original figure about the intersection point of the lines by an angle equal to twice the angle formed by the reflection lines. In other words, the product of two reflections across perpendicular lines will always produce a rotation.

My professor told me that I need more explanation for why two reflections across parallel lines results in a translation and why two reflections across intersecting lines results in a rotation. He said that I just seem to say it is that way and that I give properties for a rotation and translation, but that I don't explain why two reflections result in a rotation or translation.

Can anyone please help me figure this out??
 
Mathematics news on Phys.org
I agree with your professor. Here's a solution for the case of intersecting lines. I'll leave the parallel case to you; similar to the following, set up a coordinate system and calculate the matrix of the composition of the reflections. If you have problems, post again.

fu0qxt.png
 
This problem has also been discussed in https://driven2services.com/staging/mh/index.php?threads/11272/.
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 36 ·
2
Replies
36
Views
6K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 16 ·
Replies
16
Views
12K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K