- #1
WMDhamnekar
MHB
- 379
- 28
Hi,
The Homestake gold mine near Lead,South Dakota is excavated to 8000 feet below the surface. Lead is nearly a mile high; the bottom of the Homestake is about 900 m below sea level. Nearby custer peak is about 2100 m above sea level.
What is the ratio of barometric pressure on the top of the custer peak to the barometric pressure at the bottom of Homestake?
(Assume that the entire atmosphere is at 300 K and that it behaves as a single ideal gas whose molar mass is 29.
How to answer this question? The known barometric formula is $P=P_0 e^{-\frac{m_gh}{kT}}$ where T=temperature, k=Boltzmann's constant, $m_g$=mass of an individual atmospheric molecule.
The Homestake gold mine near Lead,South Dakota is excavated to 8000 feet below the surface. Lead is nearly a mile high; the bottom of the Homestake is about 900 m below sea level. Nearby custer peak is about 2100 m above sea level.
What is the ratio of barometric pressure on the top of the custer peak to the barometric pressure at the bottom of Homestake?
(Assume that the entire atmosphere is at 300 K and that it behaves as a single ideal gas whose molar mass is 29.
How to answer this question? The known barometric formula is $P=P_0 e^{-\frac{m_gh}{kT}}$ where T=temperature, k=Boltzmann's constant, $m_g$=mass of an individual atmospheric molecule.