- #1
s3a
- 818
- 8
Homework Statement
Integrate √(25 - x^2) dx from 0 to 5 using an infinite Riemann Sum
Homework Equations
lim n→∞ Σ_(i=1)^n i = n(n+1)/2
lim n→∞ Σ_(i=1)^n i^2 = n(n+1)(2n+1)/6
The Attempt at a Solution
Δx = (b - a)/n
Δx = (5 - 0)/n
Δx = 5/n
f(x_i) = √(25 - [a + iΔx]^2)
f(x_i) = √(25 - [0 + 5i/n]^2)
f(x_i) = √(25 - [5i/n]^2)
f(x_i) = √(25 - 25 i^2/n^2)
f(x_i) = √(25) √(1 - i^2/n^2)
f(x_i) = 5 √(1 - i^2/n^2)
lim n→∞ Σ_(i=1)^n [f(x_i) Δx]
lim n→∞ Σ_(i=1)^n [ [5 √(1 - i^2/n^2)] [5/n] ]
lim n→∞ 5/n Σ_(i=1)^n [5 √(1 - i^2/n^2)] (This is where I'm stuck.)
Is it impossible to compute the definite integral of √(25 - x^2) dx from 0 to 5 using an infinite Riemann sum (such that I have to use the regular integral method of trigonometric substitution instead)?
If it is possible, how do I proceed from where I am stuck?
Any help in getting unstuck would be GREATLY appreciated!