- #1
nacho-man
- 171
- 0
Hi bros,
so I feel like I am very close, but cannot find out how to go further.
Q.1 Compute the DTFT of the following signals, either directly or using its properties (below a is a fixed constant |a| < 1):
for $x_n = a^n \cos(\lambda_0 n)u_n$ where $\lambda_0 \in (0, \pi)$ and
$u_n$ is the step function, i.e $u_n = 1 $ for $n\ge 0 $ and $0$ otherwise.so,
$X(e^{i \lambda}) = \sum_{n=0}^{+\infty} x_n e^{-i\lambda n}$$X(e^{i \lambda}) = \sum_{n=0}^{+\infty} a^n \cos(\lambda_0 n) e^{-i\lambda n}$
using euler's formula: $\cos(\lambda_0 n)$ = $\frac{e^{i\lambda_0 n}+ e^{-i\lambda_0 n}}{2} $
so $X(e^{i \lambda}) = \frac{1}{2} \sum_{n=0}^{+\infty} (a e^{-i \lambda}( e^{i\lambda_0}+ e^{-i\lambda_0}))^n $
which gives
$\frac{1}{2} \sum_{n=0}^{+\infty} a^n(e^{i \lambda_0 - i\lambda} + e^{-i \lambda_0 - i\lambda})^n)$
and now i am stuck
.
i think i have it right upto this point, but i do not know how to proceed.
also in our notes, he has said to use the property called modulation, which meanswhere we have $x^n e^{i \lambda_0 n}$ the DTFT will be of the form $X(e^{i(\lambda-\lambda_0)})$ANY HELP IS APPRECIATED! thank you!
so I feel like I am very close, but cannot find out how to go further.
Q.1 Compute the DTFT of the following signals, either directly or using its properties (below a is a fixed constant |a| < 1):
for $x_n = a^n \cos(\lambda_0 n)u_n$ where $\lambda_0 \in (0, \pi)$ and
$u_n$ is the step function, i.e $u_n = 1 $ for $n\ge 0 $ and $0$ otherwise.so,
$X(e^{i \lambda}) = \sum_{n=0}^{+\infty} x_n e^{-i\lambda n}$$X(e^{i \lambda}) = \sum_{n=0}^{+\infty} a^n \cos(\lambda_0 n) e^{-i\lambda n}$
using euler's formula: $\cos(\lambda_0 n)$ = $\frac{e^{i\lambda_0 n}+ e^{-i\lambda_0 n}}{2} $
so $X(e^{i \lambda}) = \frac{1}{2} \sum_{n=0}^{+\infty} (a e^{-i \lambda}( e^{i\lambda_0}+ e^{-i\lambda_0}))^n $
which gives
$\frac{1}{2} \sum_{n=0}^{+\infty} a^n(e^{i \lambda_0 - i\lambda} + e^{-i \lambda_0 - i\lambda})^n)$
and now i am stuck
.
i think i have it right upto this point, but i do not know how to proceed.
also in our notes, he has said to use the property called modulation, which meanswhere we have $x^n e^{i \lambda_0 n}$ the DTFT will be of the form $X(e^{i(\lambda-\lambda_0)})$ANY HELP IS APPRECIATED! thank you!