MHB Compute Pool Volume: Angeezzzz's Question at Yahoo Answers

  • Thread starter Thread starter MarkFL
  • Start date Start date
  • Tags Tags
    Computing Volume
AI Thread Summary
The discussion revolves around calculating the volume of a swimming pool shaped like an ellipse, defined by the equation x^2/3600 + y^2/2500 = 1. The cross-sections of the pool, taken perpendicular to the ground and parallel to the y-axis, are squares. By analyzing the geometry, the volume is derived using integration, focusing on the first quadrant and then multiplying the result by four for symmetry. The final calculated volume of the pool is 800,000 cubic feet. This solution illustrates the application of calculus in determining volumes of irregular shapes.
MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

Volume integration help?


As viewed from above, a swimming pool has the shape of the ellipse given by
x^2/3600+y^2/2500=1

The cross sections perpendicular to the ground and parallel to the y-axis are squares. Find the total volume of the pool. (Assume the units of length and area are feet and square feet respectively. Do not put units in your answer.)

V= ? ft^3

I have posted a link there to this thread so the OP can view my work.
 
Mathematics news on Phys.org
Hello Angeezzzz,

We first should write the ellipse in standard form:

$$\frac{x^2}{60^2}+\frac{y^2}{50^2}=1$$

Thus, we see the length of the semi-major axis is 60. We may restrict ourselft to the first quadrant, and then by symmetry quadruple the result to get the total volume. The volume of an arbitrary rectangular slice is:

$$dV=bh\,dx$$

where:

$$b=y=\frac{\sqrt{3000^2-50^2x^2}}{60}$$

$$h=2y=\frac{\sqrt{3000^2-50^2x^2}}{30}$$

Hence, we may state:

$$dV=\frac{3000^2-50^2x^2}{1800}\,dx=-\frac{25}{18}\left(x^2-3600 \right)\,dx$$

And so the total volume is given by:

$$V=-\frac{50}{9}\int_0^{60}x^2-3600\,dx$$

Applying the FTOC, we obtain:

$$V=-\frac{50}{9}\left[\frac{x^3}{3}-3600x \right]_0^{60}=-\frac{50\cdot60^3}{9}\left(\frac{1}{3}-1 \right)=-\frac{50\cdot60^3}{9}\left(-\frac{2}{3} \right)=800000$$
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top