- #1
docnet
Gold Member
- 799
- 486
- Homework Statement
- Find ##Res(h,z_0)##
- Relevant Equations
- ##h=\frac{f}{g}##
There is a typo. It should say ##h=\frac{f}{g}##.
Attempt: ##f## and ##g## are holomorphic on ##\Omega##. Homomorphic functions form a ##\mathcal{C}^*## algebra, so ##h## is holomorphic on ##\Omega## where ##g\neq 0##.
If ##z_0## is a removal singularity of ##h##, then ##Res(h,z_0)=0## by Morera's theorem.
Assume ##f(z_0)\neq 0##, then ##z_0## is a second order pole of h since ##g''(x_0)\neq 0 ##.
$$Res(h,z_0)=lim_{z\rightarrow z_0}\frac{d}{dz}\Big[\frac{f}{g}(z-z_0)^2\Big]$$
This method produces indeterminate forms, even after applying the L'Hopital's rule.
Let ##\mathcal{C}=\{z:|z-z_0|=1/2\}##. By Residue theorem,
$$Res(h,z_0)=\frac{1}{2\pi i}\int_\mathcal{C}\frac{f}{g}dz$$
This integral cannot be computed since ##f## and ##g## are not given.
Can anyone think of a clever method that could solve this problem?
Last edited: