Compute Two Series: Summation Notation

  • MHB
  • Thread starter Krizalid1
  • Start date
  • Tags
    Series
In summary, the first series can be simplified to $1-\sqrt{\frac{1}{2}}$, while the second series can be written as $\displaystyle \sum_{k \ge 1}\frac{2^k}{\binom{2k}{k}}$, and by applying various mathematical techniques such as differentiating and rearranging, it can be simplified to $1+\frac{\pi}{2}$.
  • #1
Krizalid1
109
0
Compute the following series:

$$\frac{1}{2} - \frac{{1 \times 3}}{{2 \times 4}} + \frac{{1 \times 3 \times 5}}{{2 \times 4 \times 6}} \mp \cdots ,$$ $$1 + \frac{{1 \times 2}}{{1 \times 3}} + \frac{{1 \times 2 \times 3}}{{1 \times 3 \times 5}} + \frac{{1 \times 2 \times 3 \times 4}}{{1 \times 3 \times 5 \times 7}} + \cdots .$$
 
Mathematics news on Phys.org
  • #2
Krizalid said:
Compute the following series:

$$\frac{1}{2} - \frac{{1 \times 3}}{{2 \times 4}} + \frac{{1 \times 3 \times 5}}{{2 \times 4 \times 6}} \mp \cdots ,$$

Remembering that is...

$\displaystyle (1+x)^{-\frac{1}{2}}= 1 - \frac{1}{2}\ x + \frac{1\ 3}{2\ 4}\ x^{2} - \frac{1\ 3\ 5}{2\ 4\ 6}\ x^{3} + ...$ (1)

... is...

$\displaystyle \frac{1}{2} - \frac{1\ 3}{2\ 4} + \frac{1\ 3\ 5}{2\ 4\ 6}- ...= 1- \sqrt{\frac{1}{2}}$ (2)

Kind regards

$\chi$ $\sigma$
 
Last edited:
  • #3
Yes, that's correct.
Second series is harder though.
 
  • #4
I think that the second problem has some thing to do with \( \displaystyle \arcsin(x)=\sum_{0}^{\infty}\frac{(2n)!}{4^n (2n+1) (n!)^2}x^{2n+1}\).
 
  • #5
Krizalid said:
Compute the following series:

$$1 + \frac{{1 \times 2}}{{1 \times 3}} + \frac{{1 \times 2 \times 3}}{{1 \times 3 \times 5}} + \frac{{1 \times 2 \times 3 \times 4}}{{1 \times 3 \times 5 \times 7}} + \cdots .$$

The solution of the second series is effectively a little more difficult task!... let's start defining...

$\displaystyle \varphi(x)= \sum_{n=1}^{\infty} \frac{n!}{(2n-1)!}\ x^{n}$ (1)

... so that is $\displaystyle \sum_{n=1}^{\infty} \frac{n!}{(2n-1)!}= \varphi(1)$. Introducing the gamma function, taking into account that is...

$\displaystyle (2n-1)!= \frac{2^{n}}{\sqrt{\pi}}\ \Gamma(n+\frac{1}{2})$ (2)

... the (1) becomes...

$\displaystyle \varphi(x)= \sqrt{\pi} \sum_{n=1}^{\infty} \frac{\Gamma(n+1)}{\Gamma(n+\frac{1}{2})}\ (\frac{x}{2})^{n}$ (3)

Now we consult the excellent library of the University of Bonn and here we find...

$\displaystyle \sum_{n=0}^{\infty} \frac{\Gamma(n+1)}{\Gamma(n+\frac{1}{2})}\ z^{n}= \frac{1}{\sqrt{\pi}\ (1-z)}\ (1+ \frac{\sqrt{z}\ \sin^{-1} \sqrt{z}}{\sqrt{1-z}}) $ (4)

... so that is...

$\displaystyle \sum_{n=1}^{\infty} \frac{n!}{(2n-1)!}= 2\ (1+ \sin^{-1} \frac{1}{\sqrt{2}})-1= 1 + \frac{\pi}{2}$

Kind regards

$\chi$ $\sigma$
 
Last edited:
  • #6
Krizalid said:
Compute the following series:

$$1 + \frac{{1 \times 2}}{{1 \times 3}} + \frac{{1 \times 2 \times 3}}{{1 \times 3 \times 5}} + \frac{{1 \times 2 \times 3 \times 4}}{{1 \times 3 \times 5 \times 7}} + \cdots .$$

The series can be written as

$\displaystyle \sum_{k \ge 1}\frac{k!}{(2k-1)!} = \sum_{k \ge 1}\frac{k!^2 2^k}{(2k)!} = \sum_{ k \ge 1}\frac{2^k}{\binom{2k}{k}} $

Consider the series

$\displaystyle \left(\sin^{-1}{x}\right)^2 = \sum_{k \ge 1}\frac{2^{2k-1}x^{2k}}{k^2 \binom{2k}{k}}$

Differentiating both sides gives$\displaystyle\frac
{2\sin^{-1}{x}}{\sqrt{1-x^2}} = \sum_{k \ge 1}\frac{2^{2k}x^{2k-1}}{k \binom{2k}{k}}$

Rearrange it as

$\displaystyle\frac
{x\sin^{-1}{x}}{\sqrt{1-x^2}} = \sum_{k \ge 1}\frac{2^{2k-1}x^{2k}}{k \binom{2k}{k}}$

Differentiating both sides we get

$\displaystyle \frac
{\sin^{-1}{x}+x\sqrt{1-x^2}}{(1-x^2)\sqrt{1-x^2}} = \sum_{k \ge 1}\frac{2^{2k}x^{2k-1}}{\binom{2k}{k}}$

Rearrange it as

$\displaystyle \frac
{x\sin^{-1}{x}+x^2\sqrt{1-x^2}}{(1-x^2) \sqrt{1-x^2}} = \sum_{k \ge 1}\frac{(2x)^{2k}}{\binom{2k}{k}}$

Put $x = \frac{1}{\sqrt{2}}$, then:

$\displaystyle 1+\frac{\pi}{2} = \sum_{k \ge 1}\frac{2^k}{\binom{2k}{k}}.$
 

FAQ: Compute Two Series: Summation Notation

What is summation notation?

Summation notation is a mathematical notation used to represent the sum of a series of numbers or terms. It consists of the symbol "Σ", which stands for "sum", followed by the starting value of the series, the variable or index of summation, and the ending value of the series.

How do you compute a series using summation notation?

To compute a series using summation notation, you need to substitute the values of the index of summation into the expression and add them together. For example, the series Σn from n=1 to 5 would be computed as 1 + 2 + 3 + 4 + 5 = 15.

What are the benefits of using summation notation?

One of the main benefits of using summation notation is that it allows for compact and efficient representation of a series. It also makes it easier to generalize and manipulate equations involving series, making it a useful tool in various fields of mathematics and science.

How do you simplify a series using summation notation?

To simplify a series using summation notation, you can use various mathematical properties and rules, such as the distributive property, to combine and rearrange terms. Additionally, you can also use known formulas and identities to replace certain terms in the series.

Can summation notation be used for infinite series?

Yes, summation notation can be used for both finite and infinite series. In the case of infinite series, the ending value of the series is replaced with the infinity symbol (∞). However, it is important to note that not all infinite series can be computed using summation notation, as they may not converge to a finite value.

Similar threads

Replies
2
Views
801
Replies
10
Views
565
Replies
4
Views
1K
Replies
7
Views
2K
Replies
2
Views
3K
Back
Top