- #1
yucheng
- 232
- 57
- Homework Statement
- > Rudin 3.4. Calculate ##\lim\limits_{n \to \infty} \left(\sqrt{n^2 + n} - n\right)##.
- Relevant Equations
- N/A
My attempt:
\begin{align}
\lim\limits_{n \to \infty} \sqrt{n^2 + n} - n &= n\sqrt{1+\frac{1}{n}} -n\\
&=n - n\\
&= 0\\
\end{align}
I think the issue is at (1)-(2)
For comparison, here is Rudin's solution
\begin{align}
\lim\limits_{n \to \infty} \sqrt{n^2 + n} - n &= n\sqrt{1+\frac{1}{n}} -n\\
&=n - n\\
&= 0\\
\end{align}
I think the issue is at (1)-(2)
For comparison, here is Rudin's solution