Computing a variance in astrophysics context

In summary, the conversation discusses the error on photometric galaxy clustering and introduces a new observable called "O" which is the ratio between power matter and angular power spectra. The conversation also talks about how to compute the variance of this new observable, with the simplified expression in equation (1) being incorrect. The correct expression needs to be inferred from the previous equation (2).
  • #1
fab13
320
7
TL;DR Summary
Computing a variance in astrophysics context : the goal is to compute the variance of a ratio of 2 parameters into astrophysics context. I have posted here since the issue is about statistics.
Below the error on photometric galaxy clustering under the form of covariance :

$$

\Delta C_{i j}^{A B}(\ell)=\sqrt{\frac{2}{(2 \ell+1) f_{\mathrm{sky}} \Delta \ell}}\left[C_{i j}^{A B}(\ell)+N_{i j}^{A B}(\ell)\right]

$$

where ##_{\text {sky }}## is the fraction of surveyed sky and ##A, B## run over the observables #### and ##, \Delta \ell## is the width of the multipoles bins used when computing the angular power spectra, and ##, j## run over all tomographic bins. The First term ##_{i j}^{A B}## refers to the Cosmic Variance and the second term ##_{i j}^{A B}(\ell)## is the Shot Noise (Poisson noise). We look at here ##, B=G##.

We introduce a new observable called "O"which is the ratio between power matter and angular power spectra

$$

O=\left(\frac{C_{\ell, \mathrm{gal}, \mathrm{sp}}^{\prime}}{C_{\ell, \mathrm{gal}, \mathrm{ph}}^{\prime}}\right)^{1 / 2}=\left(\frac{b_{s p}}{b_{p h}}\right)

$$

Taking the ratio between both, one can write :

$$

O=\left(\frac{b_{s p}^{2} C_{\ell, \mathrm{DM}}^{\prime}+\Delta C_{s p, i j}^{G G}}{b_{p h}^{2} C_{\ell, \mathrm{DM}}^{\prime}+\Delta C_{p h, i j}^{G G}}\right)^{1 / 2}

$$

We neglect the Poisson noise term ##\Delta C_{p h, i j}^{G G}## (sum of Cosmic Variance and Shot Noise) ##\Delta C_{p h, i j}^{G G}## on denominator since it is very small compared to ##b_{p h}^{2} C_{\ell, \mathrm{DM}}^{\prime}## We consider also the dominance of spectroscopic Shot Noise ##N_{s p, i i}^{G G}(\ell)##in the quantity ##\Delta C_{s p, i j}^{G G}## Let's recall the notation for photometric ##C_{\ell, \text { gal }, \mathrm{ph}}^{\prime}## :

$$

C_{\ell, \mathrm{gal}, \mathrm{ph}}^{\prime}=\int_{l_{m i n}}^{l_{\max }} C_{\ell, \mathrm{gal}, \mathrm{ph}}(\ell) \mathrm{d} \ell=b_{p h}^{2} \int_{l_{\min }}^{l_{\max }} C_{\ell, \mathrm{DM}} \mathrm{d} \ell=b_{p h}^{2} C_{\ell, \mathrm{DM}}^{\prime}

$$

This way, one has :

$$

O=\left(\frac{b_{s p}^{2} C_{\ell, \mathrm{DM}}^{\prime}+N_{s p, i j}^{G G}(\ell)}{b_{p h}^{2} C_{\ell, \mathrm{DM}}^{\prime}+\Delta C_{p h, i j}}\right)^{1 / 2}=\left(\frac{b_{s p}^{2}}{b_{p h}^{2}}+\frac{\sqrt{\frac{2}{(2 \ell+1) f_{\mathrm{sky}} \Delta \ell}} N_{s p, i j}^{G G}(\ell)}{C_{\ell, \mathrm{gal}, \mathrm{ph}}^{\prime}(\ell)}\right)^{1 / 2}

$$

and finally for each bin #### :

$$

\sigma_{o}^{2}=\left[\int_{l_{m i n}}^{l_{\max }} C_{\ell, \mathrm{gal}, \mathrm{ph}}(\ell) \mathrm{d} \ell\right]^{-1}\left[\frac{2}{(2 \ell+1) f_{\mathrm{sky}} \Delta \ell}\right]^{1 / 4}\left(N_{s p, i j}^{G G}(\ell)\right)^{1 / 2}

$$

with :

$$

N_{s p, i j}^{\mathrm{GG}}(\ell)=\frac{1}{\bar{n}_{s p, i}} \delta_{i j}^{\mathrm{K}}

$$

with ##\bar{n}_{s p, i}## the spectroscopic density of galaxies per bin.QUESTION: How to compute the variance ##\sigma_o^2## from the last simplified expression of the ratio.The issue comes from the fact that I have a square root in my expression for the observable "0" :\begin{equation}

O=\left(\frac{C_{\ell, \mathrm{gal}, \mathrm{sp}}^{\prime}}{C_{\ell, \mathrm{gal}, \mathrm{ph}}^{\prime}}\right)^{1 / 2}=\left(\frac{b_{s p}}{b_{p h}}\right)

\end{equation}I have posted on https://math.stackexchange.com/questions/4087630/variance-of-a-the-root-square-of-a-quantity but from the answer :\begin{align}\operatorname{Var}X&=\Bbb E(X^2)-(\Bbb EX)^2\\&=\Bbb E(b_1^2/b_2^2+N/f)-\left(\Bbb E\sqrt{b_1^2/b_2^2+N/f}\right)^2\\&=b_1^2/b_2^2+\Bbb E(N/f)-\left(\Bbb E\sqrt{b_1^2/b_2^2+N/f}\right)^2.\end{align} I have to compute expectation and I don't know how to compute these expectations (relatively to which quantity ? on ##\ell## multipole ? on Observable Covariance ##C_{ij}^{AB}## ?It is confused in my head, if someone could help me or gives suggestions, this would be fine.
 
Physics news on Phys.org
  • #2
I have just realized tha the simplifed expression :

$$\sigma_{o}^{2}=\left[\int_{l_{m i n}}^{l_{\max }} C_{\ell, \mathrm{gal}, \mathrm{ph}}(\ell) \mathrm{d} \ell\right]^{-1}\left[\frac{2}{(2 \ell+1) f_{\mathrm{sky}} \Delta \ell}\right]^{1 / 4}\left(N_{s p, i j}^{G G}(\ell)\right)^{1 / 2}\quad(1)$$

is wrong, I can't infer this from the previous one :

$$O=\left(\frac{b_{s p}^{2} C_{\ell, \mathrm{DM}}^{\prime}+N_{s p, i j}^{G G}(\ell)}{b_{p h}^{2} C_{\ell, \mathrm{DM}}^{\prime}+\Delta C_{p h, i j}}\right)^{1 / 2}=\left(\frac{b_{s p}^{2}}{b_{p h}^{2}}+\frac{\sqrt{\frac{2}{(2 \ell+1) f_{\mathrm{sky}} \Delta \ell}} N_{s p, i j}^{G G}(\ell)}{C_{\ell, \mathrm{gal}, \mathrm{ph}}^{\prime}(\ell)}\right)^{1 / 2}\quad(2)$$

How can I simplify the equation (2) to get the expression of ##\sigma_o^{2}## ?
 
Back
Top