A Computing Correlation functions

gremory
Messages
3
Reaction score
0
TL;DR Summary
How do i understand what a correlation function is and what i can do with it
Hello, recently I'm learning about correlation functions in the context of QFT. Correct me with I'm wrong but what i understand is that tha n-point correlation functions kinda of describe particles that are transitioning from a point in space-time to another by excitations on the field. So, what i need help is that i have a field and this field is solution to the classic equations of motion (i.e. it was obteined via hamilton-lagrange equations of motion). I want to know, if it's possible, how to use this field in a correlation function, if it would have any physical meaning and if i can obtain anything from it. Meaning, how do i use a specific field solution and get some sort of result (in this case a probability i guess). I hope I've been clear because english is not my native language so maybe something is not right or confusing.
 
Physics news on Phys.org
gremory said:
I want to know, if it's possible, how to use this field in a correlation function, if it would have any physical meaning and if i can obtain anything from it.
Correlation functions are what QFT is all about. In the simple case of an harmonic oscillator the propagator ## \langle x(t) x(0) \rangle ## describes how the coordinate at one time is correlated with the coordinate at a later time ##t##. A photon propagator describes how the field at one point in space-time is related to a current at another point. Because of interactions (for example with electrons) these correlations become modified; they are not the same as the Green's function you can derive from a simple Lagrangian that describes only non-interacting ("raw") particles. But compounding the simple Green's functions in the form of Feynman diagrams provides a way to compute the correlations of the "dressed" particles in the real world. Leading to a refractive index, for example.

A long time ago a tutor suggested a book to me that I found very enlightening: "Elements of Advanced Quantum Theory" by John Ziman (CUP 1969). Perhaps you can find it in a library.
 
  • Like
Likes gentzen, vanhees71 and protonsarecool
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
I am reading WHAT IS A QUANTUM FIELD THEORY?" A First Introduction for Mathematicians. The author states (2.4 Finite versus Continuous Models) that the use of continuity causes the infinities in QFT: 'Mathematicians are trained to think of physical space as R3. But our continuous model of physical space as R3 is of course an idealization, both at the scale of the very large and at the scale of the very small. This idealization has proved to be very powerful, but in the case of Quantum...
Thread 'Lesser Green's function'
The lesser Green's function is defined as: $$G^{<}(t,t')=i\langle C_{\nu}^{\dagger}(t')C_{\nu}(t)\rangle=i\bra{n}C_{\nu}^{\dagger}(t')C_{\nu}(t)\ket{n}$$ where ##\ket{n}## is the many particle ground state. $$G^{<}(t,t')=i\bra{n}e^{iHt'}C_{\nu}^{\dagger}(0)e^{-iHt'}e^{iHt}C_{\nu}(0)e^{-iHt}\ket{n}$$ First consider the case t <t' Define, $$\ket{\alpha}=e^{-iH(t'-t)}C_{\nu}(0)e^{-iHt}\ket{n}$$ $$\ket{\beta}=C_{\nu}(0)e^{-iHt'}\ket{n}$$ $$G^{<}(t,t')=i\bra{\beta}\ket{\alpha}$$ ##\ket{\alpha}##...
Back
Top