MHB Computing joint cumulative distribution function

AI Thread Summary
To compute the joint cumulative distribution function (CDF) for the exponential random variable X and Y = X^3, the correct formulation is F(x,y) = P(X ≤ x, Y ≤ y) = P(X ≤ x, X^3 ≤ y) = P(X ≤ min(x, y^{1/3})). The probability density function (PDF) for X is f_x(x) = λe^{-λx} for x ≥ 0. The PDF for Y is derived as f_y(y) = (λ/3)y^{-2/3}e^{-λy^{1/3}} for y ≥ 0. The next step involves integrating the joint PDF to find the joint CDF based on the established relationship. This process is essential for understanding the behavior of the random variables involved.
vincentvance
Messages
8
Reaction score
0
With X having the exponential $(\lambda)$ distribution and $Y = X^3$, how do I compute the joint cumulative distribution function?

Here is how far I've come:

$F(x,y) = P(X ≤ x, Y ≤ y) = P(X ≤ x, x^3 ≤ y) = P(X ≤ x, X ≤ y^{1/3}) = P(X ≤ min(x, y^{1/3})$,

$f_x(x) = \lambda e^{-\lambda x}$$ for $ x ≥ 0, 0 otherwise,

$f_y(y) = \lambda /3 y^{-2/3}e^{-\lambda y^{1/3}}$$ for $ y ≥ 0, 0 otherwise.

Now I have no idea how to continue...
 
Physics news on Phys.org
Hi,

What you've done so far is correct:
vincentvance said:
$F(x,y) = P(X ≤ x, Y ≤ y) = P(X ≤ x, X^3 ≤ y) = P(X ≤ x, X ≤ y^{1/3}) = P(X ≤ \min(x, y^{1/3}))$,

We know that $X$ has an exponential distribution with parameter $\lambda$, hence the joint distribution is ...
 
I was reading a Bachelor thesis on Peano Arithmetic (PA). PA has the following axioms (not including the induction schema): $$\begin{align} & (A1) ~~~~ \forall x \neg (x + 1 = 0) \nonumber \\ & (A2) ~~~~ \forall xy (x + 1 =y + 1 \to x = y) \nonumber \\ & (A3) ~~~~ \forall x (x + 0 = x) \nonumber \\ & (A4) ~~~~ \forall xy (x + (y +1) = (x + y ) + 1) \nonumber \\ & (A5) ~~~~ \forall x (x \cdot 0 = 0) \nonumber \\ & (A6) ~~~~ \forall xy (x \cdot (y + 1) = (x \cdot y) + x) \nonumber...
I was reading documentation about the soundness and completeness of logic formal systems. Consider the following $$\vdash_S \phi$$ where ##S## is the proof-system making part the formal system and ##\phi## is a wff (well formed formula) of the formal language. Note the blank on left of the turnstile symbol ##\vdash_S##, as far as I can tell it actually represents the empty set. So what does it mean ? I guess it actually means ##\phi## is a theorem of the formal system, i.e. there is a...
Back
Top