- #1
chy1013m1
- 15
- 0
in one side of Stoke's theorem we compute curl(F ) . ndA .
When we have computed curl(F ) in x-y-z coordinate, but have parametrized the surface in cylindrical / spherical coordinates, then in computing ndA, we do the cross product of the partials then times that by du dt (or somethin else) . Can we then transform curl(F ) using the transformation of the surface and dot the 2 quantities together ?
also, there are cases where curl(F ) and n are easy to compute in the x-y-z coordinates, but the surface can be described easily in spherical coordinate. In that case how do we correctly proceed ? do we have to make sure the vector n is normalized (in x-y-z) then compute dA as |dG/du x dG/dv|dudv ?
thanks
When we have computed curl(F ) in x-y-z coordinate, but have parametrized the surface in cylindrical / spherical coordinates, then in computing ndA, we do the cross product of the partials then times that by du dt (or somethin else) . Can we then transform curl(F ) using the transformation of the surface and dot the 2 quantities together ?
also, there are cases where curl(F ) and n are easy to compute in the x-y-z coordinates, but the surface can be described easily in spherical coordinate. In that case how do we correctly proceed ? do we have to make sure the vector n is normalized (in x-y-z) then compute dA as |dG/du x dG/dv|dudv ?
thanks