- #1
bomba923
- 763
- 0
Just four questions here :
1) For a function f(x), [itex] \exists f''\left( x \right) [/itex] for [itex] \left\{ {x|\left( { - \infty ,a} \right) \cup \left( {a,\infty } \right)} \right\} [/itex], and [tex] \mathop {\lim }\limits_{x \to a} f\left( x \right) = \infty [/tex].
Then, is it true that
[tex] \mathop {\lim }\limits_{x \to a} f''\left( x \right) > 0 \, {?} [/tex]
(...in the sense that always [itex] \exists \, \varepsilon > 0 [/itex] such that [itex] \forall x \in \left[ {a - \varepsilon ,a + \varepsilon } \right] [/itex] where [itex] x \ne a [/itex], [itex] f''\left( {x} \right) > 0 [/itex], that is )
--------------------------------------------------------------------------
2) And, if
[tex] \mathop {\lim }\limits_{x \to a} f\left( x \right) = - \infty [/tex], then
[tex] \mathop {\lim }\limits_{x \to a} f''\left( x \right) < 0 \, {?} [/tex], right?
If both statements are true, what's the name of the theorem stating them?
(or explaining them, I suppose)
---------------------------------------------------------------------------
3) Now, let [itex] f^{\left( n \right)} \left( x \right) [/itex] represent the n'th derivative of f(x). If [tex] \mathop {\lim }\limits_{x \to a} f\left( x \right) = \infty [/tex],
is it true that if [tex] \exists f^{\left( n \right)} \left( x \right) [/tex],
then [tex] \mathop {\lim }\limits_{x \to a} f^{\left( n \right)} \left( x \right) > 0 \, {?}[/tex]
--------------------------------------------------------========
4) Finally, if [tex] \mathop {\lim }\limits_{x \to a} f\left( x \right) = \infty [/tex],
is it true that if [tex] \exists f^{\left( n \right)} \left( x \right) [/tex],
then [tex] \mathop {\lim }\limits_{x \to a} f^{\left( n \right)} \left( x \right) = \infty \, {?}[/tex]
1) For a function f(x), [itex] \exists f''\left( x \right) [/itex] for [itex] \left\{ {x|\left( { - \infty ,a} \right) \cup \left( {a,\infty } \right)} \right\} [/itex], and [tex] \mathop {\lim }\limits_{x \to a} f\left( x \right) = \infty [/tex].
Then, is it true that
[tex] \mathop {\lim }\limits_{x \to a} f''\left( x \right) > 0 \, {?} [/tex]
(...in the sense that always [itex] \exists \, \varepsilon > 0 [/itex] such that [itex] \forall x \in \left[ {a - \varepsilon ,a + \varepsilon } \right] [/itex] where [itex] x \ne a [/itex], [itex] f''\left( {x} \right) > 0 [/itex], that is )
--------------------------------------------------------------------------
2) And, if
[tex] \mathop {\lim }\limits_{x \to a} f\left( x \right) = - \infty [/tex], then
[tex] \mathop {\lim }\limits_{x \to a} f''\left( x \right) < 0 \, {?} [/tex], right?
If both statements are true, what's the name of the theorem stating them?
(or explaining them, I suppose)
---------------------------------------------------------------------------
3) Now, let [itex] f^{\left( n \right)} \left( x \right) [/itex] represent the n'th derivative of f(x). If [tex] \mathop {\lim }\limits_{x \to a} f\left( x \right) = \infty [/tex],
is it true that if [tex] \exists f^{\left( n \right)} \left( x \right) [/tex],
then [tex] \mathop {\lim }\limits_{x \to a} f^{\left( n \right)} \left( x \right) > 0 \, {?}[/tex]
--------------------------------------------------------========
4) Finally, if [tex] \mathop {\lim }\limits_{x \to a} f\left( x \right) = \infty [/tex],
is it true that if [tex] \exists f^{\left( n \right)} \left( x \right) [/tex],
then [tex] \mathop {\lim }\limits_{x \to a} f^{\left( n \right)} \left( x \right) = \infty \, {?}[/tex]
Last edited: