Concavity of y = x(cosx) at x = pi/3: Second Derivative Test

  • Thread starter Thread starter donjt81
  • Start date Start date
donjt81
Messages
70
Reaction score
0
I am doing this problem and I am getting stuck at solving the equation

problem: Use the second derivative test to determine the concavity of the following function. y = x(cosx) at x = pi/3

solution: y' = -xsinx + cosx
y'' = -xcosx - 2sinx = 0

and then i did
-xcosx = 2sinx ( i don't know if this is correct)
and then I am stuck... i don't know how to proceed.

please help
 
Physics news on Phys.org
The function is upward concave is f''(x) > 0, and downward concave if f''(x) < 0. So just plug x=pi/3 into your function for y''.
 
ohhhh! duhhh! I shouldve known... thanks
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top