- #1
RJLiberator
Gold Member
- 1,095
- 63
Question:A bicyclist starts from home and rides back and forth along a straight East/West path. Her (instantaneous) velocity as a function of time is given by v(t), where time t is measured in minutes. Consider:
[itex]d_{1} = \int^{30}_{0} v(t) dt[/itex] and [itex]d_{2} = \int^{30}_{0} |v(t)| dt[/itex]
Choose what it represents from the following:
(a) the total distance the bicyclist rode in 30 minutes
(b) the bicyclist's average velocity over 30 minutes
(c) the bicyclist's distance from the home after 30 minutes
(d) none of the above.
My thinking: Allright well, the two integrals (d1 and d2) are essentially the same thing other than the absolute value sign. This leads me to believe that d1 is (c) and d2 is (a). This is kind of a logical guess on my part. Can anyone explain what the equation is actually saying?
To me, d1 is saying: The area under the curve from 0minutes to 30 minutes is represented by v'(t). This would mean to me that (c) should be the correct answer. While, d2 is saying the absolute value (negative and positive area combined) of v'(t) from 0mintues to 30 minutes. This would be the total distance traveled aka (a).
If my conceptual understanding/writing is wrong, please do point it out to me.
Is my thinking correct?
Thank you all for your help.
[itex]d_{1} = \int^{30}_{0} v(t) dt[/itex] and [itex]d_{2} = \int^{30}_{0} |v(t)| dt[/itex]
Choose what it represents from the following:
(a) the total distance the bicyclist rode in 30 minutes
(b) the bicyclist's average velocity over 30 minutes
(c) the bicyclist's distance from the home after 30 minutes
(d) none of the above.
My thinking: Allright well, the two integrals (d1 and d2) are essentially the same thing other than the absolute value sign. This leads me to believe that d1 is (c) and d2 is (a). This is kind of a logical guess on my part. Can anyone explain what the equation is actually saying?
To me, d1 is saying: The area under the curve from 0minutes to 30 minutes is represented by v'(t). This would mean to me that (c) should be the correct answer. While, d2 is saying the absolute value (negative and positive area combined) of v'(t) from 0mintues to 30 minutes. This would be the total distance traveled aka (a).
If my conceptual understanding/writing is wrong, please do point it out to me.
Is my thinking correct?
Thank you all for your help.