- #1
mathmari
Gold Member
MHB
- 5,049
- 7
Hey!
Let $\gamma\in \mathbb{R}$ and $A=\begin{pmatrix}1 & \gamma \\ 0 & 1\end{pmatrix}$.
I want to calculate the condition numbers $\text{cond}_1(A) , \text{cond}_2(A) ,\text{cond}_{\infty}(A) $.
The determinant of the matrix $A$ is equal to $\det (A)=1\neq 0$, so the matrix $A$ is invertible.
The inverse matrix is $A^{-1}=\frac{1}{\det (A)}\begin{pmatrix}1 & -\gamma \\ 0 & 1\end{pmatrix}=\begin{pmatrix}1 & -\gamma \\ 0 & 1\end{pmatrix}$.
Let $\gamma\in \mathbb{R}$ and $A=\begin{pmatrix}1 & \gamma \\ 0 & 1\end{pmatrix}$.
I want to calculate the condition numbers $\text{cond}_1(A) , \text{cond}_2(A) ,\text{cond}_{\infty}(A) $.
The determinant of the matrix $A$ is equal to $\det (A)=1\neq 0$, so the matrix $A$ is invertible.
The inverse matrix is $A^{-1}=\frac{1}{\det (A)}\begin{pmatrix}1 & -\gamma \\ 0 & 1\end{pmatrix}=\begin{pmatrix}1 & -\gamma \\ 0 & 1\end{pmatrix}$.
- \begin{equation*}\text{cond}_1(A) = \|A\|_1 \cdot \|A^{-1}\|_1\end{equation*}
The norm is defined by \begin{equation*}\|A\|_1:=\max_{1\leq k\leq 2}\sum_{j=1}^2|a_{jk}|\end{equation*}
We have the following norms: \begin{align*}&\|A\|_1=\max \{|1|+|0|, |\gamma|+|1|\}=\max\{1, |\gamma|+1\}=|\gamma|+1 \\ &\|A^{-1}\|_1=\max \{|1|+|0|, |-\gamma|+|1|\}=\max\{1, |\gamma|+1\}=|\gamma|+1\end{align*}
So, the condition number is $\text{cond}_1(A) = \|A\|_1 \cdot \|A^{-1}\|_1=\left (\gamma|+1\right )\cdot \left (|\gamma|+1\right )=\left (|\gamma|+1\right )^2$.
- \begin{equation*}\text{cond}_2(A) = \|A\|_2 \cdot \|A^{-1}\|_2\end{equation*}
The norm is defined by \begin{equation*}\|A\|_2:=\max\left \{\sqrt{\lambda} : \lambda \text{ ist Eigenwert von } \overline{A}^TA\right \}\end{equation*} right? (Wondering)
Since we have only real numbers, it is $\overline{A}^T=A^T$.
We have that \begin{equation*}A^TA=\begin{pmatrix}1 & 0\\ \gamma & 1\end{pmatrix}\begin{pmatrix}1 & \gamma \\ 0 & 1\end{pmatrix}=\begin{pmatrix}1 & \gamma \\ \gamma & \gamma^2+1\end{pmatrix} \ \text{ and } \ (A^{-1})^TA^{-1}=\begin{pmatrix}1 & 0\\ -\gamma & 1\end{pmatrix}\begin{pmatrix}1 & -\gamma \\ 0 & 1\end{pmatrix}=\begin{pmatrix}1 & -\gamma \\ -\gamma & \gamma^2+1\end{pmatrix}\end{equation*}
The eigenvalues are $\frac{\gamma^2-2\pm \sqrt{\gamma^4-4\gamma^2}}{2}$, or not? So is \begin{equation*}\|A\|_2=\|A^{-1}\|_2=\sqrt{\frac{\gamma^2-2+ \sqrt{\gamma^4-4\gamma^2}}{2}}\end{equation*} ? (Wondering) - \begin{equation*}\text{cond}_{\infty}(A) = \|A\|_{\infty} \cdot \|A^{-1}\|_{\infty}\end{equation*}
The norm is defined by \begin{equation*}\|A\|_{\infty}:=\max_{1\leq j\leq 2}\sum_{k=1}^2|a_{jk}|\end{equation*}
We have the following norms: \begin{align*}&\|A\|_{\infty}=\max \{|1|+|\gamma|, |0|+|1|\}=\max\{1+|\gamma|, 1\}=1+|\gamma| \\ &\|A^{-1}\|_{\infty}=\max \{|1|+|-\gamma|, |0|+|1|\}=\max\{1+|\gamma|,1\}=1+|\gamma|\end{align*}
So, the condition number is $\text{cond}_{\infty}(A) = \|A\|_{\infty} \cdot \|A^{-1}\|_{\infty}=\left (1+\gamma|\right )\cdot \left (1+|\gamma|\right )=\left (1+|\gamma|\right )^2$.